//===- ScalarEvolutionNormalization.cpp - See below -----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements utilities for working with "normalized" expressions. // See the comments at the top of ScalarEvolutionNormalization.h for details. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionNormalization.h" using namespace llvm; namespace { /// TransformKind - Different types of transformations that /// TransformForPostIncUse can do. enum TransformKind { /// Normalize - Normalize according to the given loops. Normalize, /// Denormalize - Perform the inverse transform on the expression with the /// given loop set. Denormalize }; /// Hold the state used during post-inc expression transformation, including a /// map of transformed expressions. class PostIncTransform { TransformKind Kind; NormalizePredTy Pred; ScalarEvolution &SE; DenseMap Transformed; public: PostIncTransform(TransformKind kind, NormalizePredTy Pred, ScalarEvolution &se) : Kind(kind), Pred(Pred), SE(se) {} const SCEV *TransformSubExpr(const SCEV *S); protected: const SCEV *TransformImpl(const SCEV *S); }; } // namespace /// Implement post-inc transformation for all valid expression types. const SCEV *PostIncTransform::TransformImpl(const SCEV *S) { if (const SCEVCastExpr *X = dyn_cast(S)) { const SCEV *O = X->getOperand(); const SCEV *N = TransformSubExpr(O); if (O != N) switch (S->getSCEVType()) { case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType()); case scSignExtend: return SE.getSignExtendExpr(N, S->getType()); case scTruncate: return SE.getTruncateExpr(N, S->getType()); default: llvm_unreachable("Unexpected SCEVCastExpr kind!"); } return S; } if (const SCEVAddRecExpr *AR = dyn_cast(S)) { // An addrec. This is the interesting part. SmallVector Operands; transform(AR->operands(), std::back_inserter(Operands), [&](const SCEV *Op) { return TransformSubExpr(Op); }); // Conservatively use AnyWrap until/unless we need FlagNW. const SCEV *Result = SE.getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagAnyWrap); switch (Kind) { case Normalize: // We want to normalize step expression, because otherwise we might not be // able to denormalize to the original expression. // // Here is an example what will happen if we don't normalize step: // ORIGINAL ISE: // {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25> // NORMALIZED ISE: // {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+, // (100 /u {0,+,1}<%bb16>)}<%bb25> // DENORMALIZED BACK ISE: // {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+, // (100 /u {1,+,1}<%bb16>)}<%bb25> // Note that the initial value changes after normalization + // denormalization, which isn't correct. if (Pred(AR)) { const SCEV *TransformedStep = TransformSubExpr(AR->getStepRecurrence(SE)); Result = SE.getMinusSCEV(Result, TransformedStep); } #if 0 // See the comment on the assert above. assert(S == TransformSubExpr(Result, User, OperandValToReplace) && "SCEV normalization is not invertible!"); #endif break; case Denormalize: // Here we want to normalize step expressions for the same reasons, as // stated above. if (Pred(AR)) { const SCEV *TransformedStep = TransformSubExpr(AR->getStepRecurrence(SE)); Result = SE.getAddExpr(Result, TransformedStep); } break; } return Result; } if (const SCEVNAryExpr *X = dyn_cast(S)) { SmallVector Operands; bool Changed = false; // Transform each operand. for (auto *O : X->operands()) { const SCEV *N = TransformSubExpr(O); Changed |= N != O; Operands.push_back(N); } // If any operand actually changed, return a transformed result. if (Changed) switch (S->getSCEVType()) { case scAddExpr: return SE.getAddExpr(Operands); case scMulExpr: return SE.getMulExpr(Operands); case scSMaxExpr: return SE.getSMaxExpr(Operands); case scUMaxExpr: return SE.getUMaxExpr(Operands); default: llvm_unreachable("Unexpected SCEVNAryExpr kind!"); } return S; } if (const SCEVUDivExpr *X = dyn_cast(S)) { const SCEV *LO = X->getLHS(); const SCEV *RO = X->getRHS(); const SCEV *LN = TransformSubExpr(LO); const SCEV *RN = TransformSubExpr(RO); if (LO != LN || RO != RN) return SE.getUDivExpr(LN, RN); return S; } llvm_unreachable("Unexpected SCEV kind!"); } /// Manage recursive transformation across an expression DAG. Revisiting /// expressions would lead to exponential recursion. const SCEV *PostIncTransform::TransformSubExpr(const SCEV *S) { if (isa(S) || isa(S)) return S; const SCEV *Result = Transformed.lookup(S); if (Result) return Result; Result = TransformImpl(S); Transformed[S] = Result; return Result; } /// Top level driver for transforming an expression DAG into its requested /// post-inc form (either "Normalized" or "Denormalized"). static const SCEV *TransformForPostIncUse(TransformKind Kind, const SCEV *S, NormalizePredTy Pred, ScalarEvolution &SE) { PostIncTransform Transform(Kind, Pred, SE); return Transform.TransformSubExpr(S); } const SCEV *llvm::normalizeForPostIncUse(const SCEV *S, const PostIncLoopSet &Loops, ScalarEvolution &SE) { auto Pred = [&](const SCEVAddRecExpr *AR) { return Loops.count(AR->getLoop()); }; return TransformForPostIncUse(Normalize, S, Pred, SE); } const SCEV *llvm::normalizeForPostIncUseIf(const SCEV *S, NormalizePredTy Pred, ScalarEvolution &SE) { return TransformForPostIncUse(Normalize, S, Pred, SE); } const SCEV *llvm::denormalizeForPostIncUse(const SCEV *S, const PostIncLoopSet &Loops, ScalarEvolution &SE) { auto Pred = [&](const SCEVAddRecExpr *AR) { return Loops.count(AR->getLoop()); }; return TransformForPostIncUse(Denormalize, S, Pred, SE); }