Summary:
While working on the GISel Combiner, I noticed I was producing location-less
error messages fairly often and set about fixing this. In the process, I
noticed quite a few places elsewhere in TableGen that also neglected to include
a relevant location.
This patch adds locations to errors that relate to a specific record (or a
field within it) and also have easy access to the relevant location. This is
particularly useful when multiclasses are involved as many of these errors
refer to the full name of a record and it's difficult to guess which substring
is grep-able.
Unfortunately, tablegen currently only supports Record granularity so it's not
currently possible to point at a specific Init so these sometimes point at the
record that caused the error rather than the precise origin of the error.
Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, nhaehnle
Reviewed By: nhaehnle
Subscribers: jdoerfert, nhaehnle, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58077
llvm-svn: 353862
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This fixes support in DAGISelMatcher backend for DAG nodes with multiple
result values. Previously the order of results in selected DAG nodes always
matched the order of results in ISel patterns. After the change the order of
results matches the order of operands in OutOperandList instead.
For example, given this definition from the attached test case:
def INSTR : Instruction {
let OutOperandList = (outs GPR:$r1, GPR:$r0);
let InOperandList = (ins GPR:$t0, GPR:$t1);
let Pattern = [(set i32:$r0, i32:$r1, (udivrem i32:$t0, i32:$t1))];
}
the DAGISelMatcher backend currently produces a matcher that creates INSTR
nodes with the first result `$r0` and the second result `$r1`, contrary to the
order in the OutOperandList. The order of operands in OutOperandList does not
matter at all, which is unexpected (and unfortunate) because the order of
results of a DAG node does matters, perhaps a lot.
With this change, if the order in OutOperandList does not match the order in
Pattern, DAGISelMatcherGen emits CompleteMatch opcodes with the order of
results taken from OutOperandList. Backend writers can use it to express
result reorderings in TableGen.
If the order in OutOperandList matches the order in Pattern, the result of
DAGISelMatcherGen is unaffected.
Patch by Eugene Sharygin
Reviewers: andreadb, bjope, hfinkel, RKSimon, craig.topper
Reviewed By: craig.topper
Subscribers: nhaehnle, craig.topper, llvm-commits
Differential Revision: https://reviews.llvm.org/D55055
llvm-svn: 348326
Summary:
This simplifies writing predicates for pattern fragments that are
automatically re-associated or commuted.
For example, a followup patch adds patterns for fragments of the form
(add (shl $x, $y), $z) to the AMDGPU backend. Such patterns are
automatically commuted to (add $z, (shl $x, $y)), which makes it basically
impossible to refer to $x, $y, and $z generically in the PredicateCode.
With this change, the PredicateCode can refer to $x, $y, and $z simply
as `Operands[i]`.
Test confirmed that there are no changes to any of the generated files
when building all (non-experimental) targets.
Change-Id: I61c00ace7eed42c1d4edc4c5351174b56b77a79c
Reviewers: arsenm, rampitec, RKSimon, craig.topper, hfinkel, uweigand
Subscribers: wdng, tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D51994
llvm-svn: 347992
Summary:
The predicate function is added in InlinePatternFragments, no need to
do it here. As a result, all uses of addPredicateFn are located in
InlinePatternFragments.
Test confirmed that there are no changes to generated files when
building all (non-experimental) targets.
Change-Id: I720e42e045ca596eb0aa339fb61adf6fe71034d5
Reviewers: arsenm, rampitec, RKSimon, craig.topper, hfinkel, uweigand
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D51993
llvm-svn: 343977
Further extension to D51035, this patch avoids all repeated predicates[] matching by caching as it collects the patterns that have multiple variants.
Saves around 25secs in debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D51839
llvm-svn: 342467
CodeGenDAGPatterns::GenerateVariants is a costly function in many tblgen commands (33.87% of the total runtime of x86 -gen-dag-isel), and due to the O(N^2) nature of the function, there are a high number of repeated comparisons of the pattern's vector<Predicate>.
This initial patch at least avoids repeating these comparisons for every Variant in a pattern. I began investigating caching all the matches before entering the loop but hit issues with how best to store the data and how to update the cache as patterns were added.
Saves around 15secs in debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D51035
llvm-svn: 340837
We were just caching the MVT set of legal types, then every call creating a new TypeSetByHwMode with it and passing it back on the stack. There's no need to do this - we can create and cache the whole TypeSetByHwMode once and return a const reference to it each time.
Additionally, TypeInfer::expandOverloads wasn't making use of the fact that the cache just contains a default mode containing all the types.
Saves up to 30secs in debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D50903
llvm-svn: 340042
This operator is called a great deal, by checking for the cheap isSimple equality cases first (a common occurrence) we can improve performance as we avoid a lot of std::map find/iteration in hasDefault.
isSimple also means that a default value is present, so we can avoid some hasDefault calls.
This also avoids a rather dodgy piece of logic that was checking for isSimple() && !VTS.isSimple() but not the inverse - it now uses the general hasDefault mode comparison test instead.
Saves around 15secs in debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D50841
llvm-svn: 339890
I noticed this during profiling of tablegen (PR28222) that we were calling Child->getType(0) which creates a ValueTypeByHwMode on the fly from the requested internal TypeSetByHwMode type and returns it by value, we then treat it as a TypeSetByHwMode reference which involves constructing a new TypeSetByHwMode on the stack with a large amount of std::map iterating/copying all along the way.
I am not an expert on tablegen, but AFAICT this is all unnecessary and we should be calling Child->getExtType(0) which returns the original TypeSetByHwMode by reference.
This gives me a 90sec reduction in msvc debug builds of x86 -gen-dag-isel.
Differential Revision: https://reviews.llvm.org/D50789
llvm-svn: 339812
The DAG combiner logic to simplify AND masks in shift counts is invalid.
While it is true that the SystemZ shift instructions ignore all but the
low 6 bits of the shift count, it is still invalid to simplify the AND
masks while the DAG still uses the standard shift operators (which are
*not* defined to match the SystemZ instruction behavior).
Instead, this patch performs equivalent operations during instruction
selection. For completely removing the AND, this now happens via
additional DAG match patterns implemented by a multi-alternative
PatFrags. For simplifying a 32-bit AND to a 16-bit AND, the existing DAG
patterns were already mostly OK, they just needed an output XForm to
actually truncate the immediate value.
Unfortunately, the latter change also exposed a bug in TableGen: it
seems XForms are currently only handled correctly for direct operands of
the outermost operation node. This patch also fixes that bug by simply
recurring through the whole pattern. This should be NFC for all other
targets.
Differential Revision: https://reviews.llvm.org/D50096
llvm-svn: 338521
Currently, any attempt to define a PatFrag involving any floating-point
only (or vector only) node causes a hard assertion failure in TableGen
if the current target does not have any floating-point (or vector)
types.
This is annoying if you want to provide convenience fragments in common
code (e.g. include/llvm/Target/TargetSelectionDAG.td) that is parsed on
all platforms, including those that miss such types.
But really, there's no reason not accept this when parsing the fragment
-- of course it would be an error for such a target to actually *use*
such a fragment anywhere, but as long as it doesn't, I think TableGen
shouldn't error out.
The immediate cause of the assertion failure is the test inside the
ValidateOnExit destructor. This patch simply disables that check while
infering types during parsing of pattern fragments (only).
Reviewed By: hfinkel, kparzysz
Differential Revision: https://reviews.llvm.org/D48887
llvm-svn: 337023
A TableGen instruction record usually contains a DAG pattern that will
describe the SelectionDAG operation that can be implemented by this
instruction. However, there will be cases where several different DAG
patterns can all be implemented by the same instruction. The way to
represent this today is to write additional patterns in the Pattern
(or usually Pat) class that map those extra DAG patterns to the
instruction. This usually also works fine.
However, I've noticed cases where the current setup seems to require
quite a bit of extra (and duplicated) text in the target .td files.
For example, in the SystemZ back-end, there are quite a number of
instructions that can implement an "add-with-overflow" operation.
The same instructions also need to be used to implement just plain
addition (simply ignoring the extra overflow output). The current
solution requires creating extra Pat pattern for every instruction,
duplicating the information about which particular add operands
map best to which particular instruction.
This patch enhances TableGen to support a new PatFrags class, which
can be used to encapsulate multiple alternative patterns that may
all match to the same instruction. It operates the same way as the
existing PatFrag class, except that it accepts a list of DAG patterns
to match instead of just a single one. As an example, we can now define
a PatFrags to match either an "add-with-overflow" or a regular add
operation:
def z_sadd : PatFrags<(ops node:$src1, node:$src2),
[(z_saddo node:$src1, node:$src2),
(add node:$src1, node:$src2)]>;
and then use this in the add instruction pattern:
defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
These SystemZ target changes are implemented here as well.
Note that PatFrag is now defined as a subclass of PatFrags, which
means that some users of internals of PatFrag need to be updated.
(E.g. instead of using PatFrag.Fragment you now need to use
!head(PatFrag.Fragments).)
The implementation is based on the following main ideas:
- InlinePatternFragments may now replace each original pattern
with several result patterns, not just one.
- parseInstructionPattern delays calling InlinePatternFragments
and InferAllTypes. Instead, it extracts a single DAG match
pattern from the main instruction pattern.
- Processing of the DAG match pattern part of the main instruction
pattern now shares most code with processing match patterns from
the Pattern class.
- Direct use of main instruction patterns in InferFromPattern and
EmitResultInstructionAsOperand is removed; everything now operates
solely on DAG match patterns.
Reviewed by: hfinkel
Differential Revision: https://reviews.llvm.org/D48545
llvm-svn: 336999
So far, we've only handled special cases of PatFrag like ImmLeaf. This patch
adds support for the remaining cases using similar mechanisms.
Like most C++ code from SelectionDAG, GISel and DAGISel expect to operate on
different types and representations and as such the code is not compatible
between the two. It's therefore necessary to add an alternative implementation
in the GISelPredicateCode field.
The target test for this feature could easily be done with IntImmLeaf and this
would save on a little boilerplate. The reason I've chosen to implement this
using PatFrag.GISelPredicateCode and not IntImmLeaf is because I was unable to
find a rule that was blocked solely by lack of support for PatFrag predicates. I
found that the ones I investigated as being likely candidates for the test
were further blocked by other things.
llvm-svn: 334871
The return value of TreePatternNode::getChild is never null. This patch also
updates various places that use return values of getChild to also use
references. Those changes were suggested post-commit for D47463.
llvm-svn: 334764
By using std::shared_ptr for TreePatternNode, we can avoid leaking them.
Reviewers: craig.topper, dsanders, stoklund, tstellar, zturner
Reviewed By: dsanders
Differential Revision: https://reviews.llvm.org/D47463
llvm-svn: 333591
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Summary:
r327219 added wrappers to std::sort which randomly shuffle the container before sorting.
This will help in uncovering non-determinism caused due to undefined sorting
order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of std::sort.
Note: This patch is one of a series of patches to replace *all* std::sort to llvm::sort.
Refer the comments section in D44363 for a list of all the required patches.
Reviewers: stoklund, kparzysz, dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45144
llvm-svn: 329451
This change deals with intrinsics with multiple outputs, for example load
instrinsic with address updated.
DAG selection for Instrinsics could be done either through source code or
tablegen. Handling all intrinsics in source code would introduce a huge chunk
of repetitive code if we have a large number of intrinsic that return multiple
values (see NVPTX as an example). While intrinsic class in tablegen supports
multiple outputs, tablegen only supports Intrinsics with zero or one output on
TreePattern. This appears to be a simple bug in tablegen that is fixed by this
change.
For Intrinsics defined as:
def int_xxx_load_addr_updated: Intrinsic<[llvm_i32_ty, llvm_ptr_ty], [llvm_ptr_ty, llvm_i32_ty], []>;
Instruction will be defined as:
def L32_X: Inst<(outs reg:$d1, reg:$d2), (ins reg:$s1, reg:$s2), "ld32_x $d1, $d2, $s2", [(set i32:$d1, i32:$d2, (int_xxx_load_addr_updated i32:$s1, i32:$s2))]>;
Patch by Wenbo Sun, thanks!
Differential Revision: https://reviews.llvm.org/D32888
llvm-svn: 321704
Allows preserving MachineMemOperands on intrinsics
through selection. For reasons I don't understand, this
is a static property of the pattern and the selector
deliberately goes out of its way to drop if not present.
Intrinsics already inherit from SDPatternOperator allowing
them to be used directly in instruction patterns. SDPatternOperator
has a list of SDNodeProperty, but you currently can't set them on
the intrinsic. Without SDNPMemOperand, when the node is selected
any memory operands are always dropped. Allowing setting this
on the intrinsics avoids needing to introduce another equivalent
target node just to have SDNPMemOperand set.
llvm-svn: 321212
Similar to r315841, GlobalISel and SelectionDAG require different code for the
common atomic predicates due to differences in the representation.
Even without that, differences in the IR (SDNode vs MachineInstr) require
differences in the C++ predicate.
This patch moves the implementation of the common atomic predicates related to
ordering into tablegen so that it can handle these differences.
It's NFC for SelectionDAG since it emits equivalent code and it's NFC for
GlobalISel since the rules involving the relevant predicates are still
rejected by the importer.
llvm-svn: 318102
Similar to r315841, GlobalISel and SelectionDAG require different code for the
common atomic predicates due to differences in the representation.
Even without that, differences in the IR (SDNode vs MachineInstr) require
differences in the C++ predicate.
This patch moves the implementation of the common atomic predicates related to
memory type into tablegen so that it can handle these differences.
It's NFC for SelectionDAG since it emits equivalent code and it's NFC for
GlobalISel since the rules involving the relevant predicates are still
rejected by the importer.
llvm-svn: 318095
Allow a pattern rewriter to be installed in CodeGenDAGPatterns and use it to
correct situations where SelectionDAG and GlobalISel disagree on
representation. For example, it would rewrite:
(sextload:i32 $ptr)<<unindexedload>><<sextload>><<sextloadi16>
to:
(sext:i32 (load:i16 $ptr)<<unindexedload>>)
I'd have preferred to replace the fragments and have the expansion happen
naturally as part of PatFrag expansion but the type inferencing system can't
cope with loads of types narrower than those mentioned in register classes.
This is because the SDTCisInt's on the sext constrain both the result and
operand to the 'legal' integer types (where legal is defined as 'a register
class can contain the type') which immediately rules the narrower types out.
Several targets (those with only one legal integer type) would then go on to
crash on the SDTCisOpSmallerThanOp<> when it removes all the possible types
for the result of the extend.
Also, improve isObviouslySafeToFold() slightly to automatically return true for
neighbouring instructions. There can't be any re-ordering problems if
re-ordering isn't happenning. We'll need to improve it further to handle
sign/zero-extending loads when the extend and load aren't immediate neighbours
though.
llvm-svn: 317971
Patch [1/5] in a series to add assembler/disassembler support for AArch64 SVE
unpredicated ADD/SUB instructions.
Patch by Sander De Smalen.
Reviewed by: rengolin
Differential Revision: https://reviews.llvm.org/D39087
llvm-svn: 317564
In type inference, an empty type set for a specific hw mode is not an
error. In earlier stages of the design it was, but having to use non-
parameterized types with target intrinsics necessarily led to type
contradictions: since the intrinsics used specific types, they were
only valid for a specific hw mode, and the resulting type set for other
modes ended up empty. To accommodate the existence of such intrinsics
individual type sets were allowed to be empty as long as not all sets
were empty.
llvm-svn: 315858