we assumed a CFG structure that would be valid when all code in
the function is reachable, but not all code is necessarily
reachable. Do a simple, but horrible, CFG walk to check for this
case.
llvm-svn: 62487
because of dead code, a phi could use the speculated instruction
that was not in "BB2". Make this check explicit and tighten up
some other corners. This fixes PR3292. No testcase becauase this
depends entirely on visitation order of blocks and requires a
sequence of 8 passes to repro.
llvm-svn: 62476
consistently for deleting branches. In addition to being slightly
more readable, this makes SimplifyCFG a bit better
about cleaning up after itself when it makes conditions unused.
llvm-svn: 61100
s/ParamAttr/Attribute/g
s/PAList/AttrList/g
s/FnAttributeWithIndex/AttributeWithIndex/g
s/FnAttr/Attribute/g
This sets the stage
- to implement function notes as function attributes and
- to distinguish between function attributes and return value attributes.
This requires corresponding changes in llvm-gcc and clang.
llvm-svn: 56622
Remove the GetResultInst instruction. It is still accepted in LLVM assembly
and bitcode, where it is now auto-upgraded to ExtractValueInst. Also, remove
support for return instructions with multiple values. These are auto-upgraded
to use InsertValueInst instructions.
The IRBuilder still accepts multiple-value returns, and auto-upgrades them
to InsertValueInst instructions.
llvm-svn: 53941
The SimplifyCFG pass looks at basic blocks that contain only phi nodes,
followed by an unconditional branch. In a lot of cases, such a block (BB) can
be merged into their successor (Succ).
This merging is performed by TryToSimplifyUncondBranchFromEmptyBlock. It does
this by taking all phi nodes in the succesor block Succ and expanding them to
include the predecessors of BB. Furthermore, any phi nodes in BB are moved to
Succ and expanded to include the predecessors of Succ as well.
Before attempting this merge, CanPropagatePredecessorsForPHIs checks to see if
all phi nodes can be properly merged. All functional changes are made to
this function, only comments were updated in
TryToSimplifyUncondBranchFromEmptyBlock.
In the original code, CanPropagatePredecessorsForPHIs looks quite convoluted
and more like stack of checks added to handle different kinds of situations
than a comprehensive check. In particular the first check in the function did
some value checking for the case that BB and Succ have a common predecessor,
while the last check in the function simply rejected all cases where BB and
Succ have a common predecessor. The first check was still useful in the case
that BB did not contain any phi nodes at all, though, so it was not completely
useless.
Now, CanPropagatePredecessorsForPHIs is restructured to to look a lot more
similar to the code that actually performs the merge. Both functions now look
at the same phi nodes in about the same order. Any conflicts (phi nodes with
different values for the same source) that could arise from merging or moving
phi nodes are detected. If no conflicts are found, the merge can happen.
Apart from only restructuring the checks, two main changes in functionality
happened.
Firstly, the old code rejected blocks with common predecessors in most cases.
The new code performs some extra checks so common predecessors can be handled
in a lot of cases. Wherever common predecessors still pose problems, the
blocks are left untouched.
Secondly, the old code rejected the merge when values (phi nodes) from BB were
used in any other place than Succ. However, it does not seem that there is any
situation that would require this check. Even more, this can be proven.
Consider that BB is a block containing of a single phi node "%a" and a branch
to Succ. Now, since the definition of %a will dominate all of its uses, BB
will dominate all blocks that use %a. Furthermore, since the branch from BB to
Succ is unconditional, Succ will also dominate all uses of %a.
Now, assume that one predecessor of Succ is not dominated by BB (and thus not
dominated by Succ). Since at least one use of %a (but in reality all of them)
is reachable from Succ, you could end up at a use of %a without passing
through it's definition in BB (by coming from X through Succ). This is a
contradiction, meaning that our original assumption is wrong. Thus, all
predecessors of Succ must also be dominated by BB (and thus also by Succ).
This means that moving the phi node %a from BB to Succ does not pose any
problems when the two blocks are merged, and any use checks are not needed.
llvm-svn: 51478
before trying to merge the block into its predecessors.
This allows two-entry-phi-return.ll to be simplified
into a single basic block.
llvm-svn: 48252
Secondly, we have to check whether the branch is actually pointing to the block
with the unwind in it. We could have gotten here because of the unwind_to alone.
llvm-svn: 48099
the function type, instead they belong to functions
and function calls. This is an updated and slightly
corrected version of Reid Spencer's original patch.
The only known problem is that auto-upgrading of
bitcode files doesn't seem to work properly (see
test/Bitcode/AutoUpgradeIntrinsics.ll). Hopefully
a bitcode guru (who might that be? :) ) will fix it.
llvm-svn: 44359
This is the final patch for this PR. It implements some minor cleanup
in the use of IntegerType, to wit:
1. Type::getIntegerTypeMask -> IntegerType::getBitMask
2. Type::Int*Ty changed to IntegerType* from Type*
3. ConstantInt::getType() returns IntegerType* now, not Type*
This also fixes PR1120.
Patch by Sheng Zhou.
llvm-svn: 33370
rename Type::getIntegralTypeMask to Type::getIntegerTypeMask.
This makes naming much more consistent. For example, there are now no longer any
instances of IntegerType that are not considered isInteger! :)
llvm-svn: 33225
recommended that getBoolValue be replaced with getZExtValue and that
get(bool) be replaced by get(const Type*, uint64_t). This implements
those changes.
llvm-svn: 33110
This patch removes the SetCC instructions and replaces them with the ICmp
and FCmp instructions. The SetCondInst instruction has been removed and
been replaced with ICmpInst and FCmpInst.
llvm-svn: 32751
The long awaited CAST patch. This introduces 12 new instructions into LLVM
to replace the cast instruction. Corresponding changes throughout LLVM are
provided. This passes llvm-test, llvm/test, and SPEC CPUINT2000 with the
exception of 175.vpr which fails only on a slight floating point output
difference.
llvm-svn: 31931
This patch converts the old SHR instruction into two instructions,
AShr (Arithmetic) and LShr (Logical). The Shr instructions now are not
dependent on the sign of their operands.
llvm-svn: 31542
Turn on -Wunused and -Wno-unused-parameter. Clean up most of the resulting
fall out by removing unused variables. Remaining warnings have to do with
unused functions (I didn't want to delete code without review) and unused
variables in generated code. Maintainers should clean up the remaining
issues when they see them. All changes pass DejaGnu tests and Olden.
llvm-svn: 31380
This patch implements the first increment for the Signless Types feature.
All changes pertain to removing the ConstantSInt and ConstantUInt classes
in favor of just using ConstantInt.
llvm-svn: 31063
not define a value that is used outside of it's block. This catches many
more simplifications, e.g. 854 in 176.gcc, 137 in vpr, etc.
This implements branch-phi-thread.ll:test3.ll
llvm-svn: 23397
consideration the case where a reference in an unreachable block could
occur. This fixes Transforms/SimplifyCFG/2005-08-01-PHIUpdateFail.ll,
something I ran into while bugpoint'ing another pass.
llvm-svn: 22584
This does a simple form of "jump threading", which eliminates CFG edges that
are provably dead. This triggers 90 times in the external tests, and
eliminating CFG edges is always always a good thing! :)
llvm-svn: 20300
SimplifyCFG is one of those passes that we use for final cleanup: it should
not rely on other passes to clean up its garbage. This fixes the "why are
trivially dead setcc's in the output of gccas" problem.
llvm-svn: 19212
if (x) {
code
...
} else {
code
...
}
Turn it into:
code
if (x) {
...
} else {
...
}
This reduces code size and in some common cases allows us to completely
eliminate the conditional. This turns several if/then/else blocks in loops
into straightline code in 179.art, turning the loops into single basic blocks
(good for modsched even!).
Maybe now brg will leave me alone ;-)
llvm-svn: 18366
Move include/Config and include/Support into include/llvm/Config,
include/llvm/ADT and include/llvm/Support. From here on out, all LLVM
public header files must be under include/llvm/.
llvm-svn: 16137
since May 1st. In this code, the pred iterator was being invalidated sometimes
causing the wrong entries to be added to PHI nodes.
The fix for this is to defererence and safe the *PI value before we hack on
branch instructions, which changes use/def chains, which SOMETIMES invalidates
the iterator.
llvm-svn: 14278
nondeterministic results that depend on where these objects land in memory.
Instead, sort by the value of the constant, which is stable.
Before this patch, the -simplifycfg pass run from two different compilers
could cause different code to be generated, though it was semantically the
same:
@@ -12258,8 +12258,8 @@
%s_addr.1 = phi sbyte* [ %s, %entry ], [ %inc.0, %no_exit ] ; <sbyte*> [#uses=5]
%tmp.1 = load sbyte* %s_addr.1 ; <sbyte> [#uses=1]
switch sbyte %tmp.1, label %no_exit [
- sbyte 0, label %loopexit
sbyte 46, label %loopexit
+ sbyte 0, label %loopexit
]
We need to stomp all of this stuff out.
llvm-svn: 14243