The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
This commit adds a wrapper for std::distance() which works with ranges.
As it would be a common case to write `distance(predecessors(BB))`, this
also introduces `pred_size()` and `succ_size()` helpers to make that
easier to write.
Differential Revision: https://reviews.llvm.org/D46668
llvm-svn: 332057
phi is on lhs of a comparison op.
For the following testcase,
L1:
%t0 = add i32 %m, 7
%t3 = icmp eq i32* %t2, null
br i1 %t3, label %L3, label %L2
L2:
%t4 = load i32, i32* %t2, align 4
br label %L3
L3:
%t5 = phi i32 [ %t0, %L1 ], [ %t4, %L2 ]
%t6 = icmp eq i32 %t0, %t5
br i1 %t6, label %L4, label %L5
We know if we go through the path L1 --> L3, %t6 should always be true. However
currently, if the rhs of the eq comparison is phi, JumpThreading fails to
evaluate %t6 to true. And we know that Instcombine cannot guarantee always
canonicalizing phi to the left hand side of the comparison operation according
to the operand priority comparison mechanism in instcombine. The patch handles
the case when rhs of the comparison op is a phi.
Differential Revision: https://reviews.llvm.org/D46275
llvm-svn: 331266
Reapply the patches with a fix. Thanks Ilya and Hans for the reproducer!
This reverts commit r330416.
The issue was that removing predecessors invalidated uses that we stored
for rewrite. The fix is to finish manipulating with CFG before we select
uses for rewrite.
llvm-svn: 330431
Revert r330413: "[SSAUpdaterBulk] Use SmallVector instead of DenseMap for storing rewrites."
Revert r330403 "Reapply "[PR16756] Use SSAUpdaterBulk in JumpThreading." one more time."
r330403 commit seems to crash clang during our integrate while doing PGO build with the following stacktrace:
#2 llvm::SSAUpdaterBulk::RewriteAllUses(llvm::DominatorTree*, llvm::SmallVectorImpl<llvm::PHINode*>*)
#3 llvm::JumpThreadingPass::ThreadEdge(llvm::BasicBlock*, llvm::SmallVectorImpl<llvm::BasicBlock*> const&, llvm::BasicBlock*)
#4 llvm::JumpThreadingPass::ProcessThreadableEdges(llvm::Value*, llvm::BasicBlock*, llvm::jumpthreading::ConstantPreference, llvm::Instruction*)
#5 llvm::JumpThreadingPass::ProcessBlock(llvm::BasicBlock*)
The crash happens while compiling 'lib/Analysis/CallGraph.cpp'.
r3340413 is reverted due to conflicting changes.
llvm-svn: 330416
Hopefully, changing set to vector removes nondeterminism detected by
some bots, or the new assert will catch something.
This reverts commit r330180.
llvm-svn: 330403
One more, hopefully the last, bug is fixed: when forming UsesToRewrite
we should ignore phi operands coming from edges that we want to delete.
This reverts r329910.
llvm-svn: 330175
Summary:
SSAUpdater is a bottleneck in JumpThreading, and this patch improves the
situation by using SSAUpdaterBulk instead.
Compile time impact: no noticable changes on CTMark, a big improvement
on the test from PR16756.
Reviewers: dberlin, davide, MatzeB
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D44282
llvm-svn: 329644
In r312664 (D36404), JumpThreading stopped threading edges into
loop headers. Unfortunately, I observed a significant performance
regression as a result of this change. Upon further investigation,
the problematic pattern looked something like this (after
many high level optimizations):
while (true) {
bool cond = ...;
if (!cond) {
<body>
}
if (cond)
break;
}
Now, naturally we want jump threading to essentially eliminate the
second if check and hook up the edges appropriately. However, the
above mentioned change, prevented it from doing this because it would
have to thread an edge into the loop header.
Upon further investigation, what is happening is that since both branches
are threadable, JumpThreading picks one of them at arbitrarily. In my
case, because of the way that the IR ended up, it tended to pick
the one to the loop header, bailing out immediately after. However,
if it had picked the one to the exit block, everything would have
worked out fine (because the only remaining branch would then be folded,
not thraded which is acceptable).
Thus, to fix this problem, we can simply eliminate loop headers from
consideration as possible threading targets earlier, to make sure that
if there are multiple eligible branches, we can still thread one of
the ones that don't target a loop header.
Patch by Keno Fischer!
Differential Revision: https://reviews.llvm.org/D42260
llvm-svn: 328798
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
JumpThreading iterates over F until the IR quiesces. Transforming
unreachable BBs increases compile time and it is also possible to
never stabilize causing JumpThreading to hang. An older attempt at
fixing this problem was D3991 where removeUnreachableBlocks(F)
was called before JumpThreading began. This has a few drawbacks:
* expensive - the routine attempts to fix up the IR to identify
additional BBs that can be removed along with unreachable BBs.
* aggressive - does not identify and preserve the shape of the IR.
At a minimum it does not preserve loop hierarchies.
* invasive - altering reachable blocks it may disrupt IR shapes
that could have otherwise been JumpThreaded.
This patch avoids removeUnreachableBlocks(F) and instead tracks
unreachable BBs in a SmallPtrSet using DominatorTree to validate the
initial state of all BBs. We then rely on subsequent passes to identify
and remove these unreachable blocks from F.
Reviewers: dberlin, sebpop, kuhar, dinesh.d
Reviewed by: sebpop, kuhar
Subscribers: hiraditya, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D44177
llvm-svn: 327713
In r263618, JumpThreading learned to look trough simple cast instructions, but
only if the source of those cast instructions was a phi/cmp i1 (in an effort to
limit compile time effects). I think this condition is too restrictive. For
switches with limited value range, InstCombine will readily introduce an extra
trunc instruction to a smaller integer type (e.g. from i8 to i2), leaving us in
the somewhat perverse situation that jump-threading would work before running
instcombine, but not after. Since instcombine produces this pattern, I think we
need to consider it canonical and support it in JumpThreading. In general,
for limiting recursion, I think the existing restriction to phi and cmp nodes
should be sufficient to avoid looking through unprofitable chains of
instructions.
Patch by Keno Fischer!
Differential Revision: https://reviews.llvm.org/D42262
llvm-svn: 327150
Summary:
The LazyValueInfo pass caches a copy of the DominatorTree when available.
Whenever there are pending DominatorTree updates within JumpThreading's
DeferredDominance object we cannot use the cached DT for LVI analysis.
This commit adds the new methods enableDT() and disableDT() to LVI.
JumpThreading also sets the appropriate usage model before calling LVI
analysis methods.
Fixes https://bugs.llvm.org/show_bug.cgi?id=36133
Reviewers: sebpop, dberlin, kuhar
Reviewed by: sebpop, kuhar
Subscribers: uabelho, llvm-commits, aprantl, hiraditya, a.elovikov
Differential Revision: https://reviews.llvm.org/D42717
llvm-svn: 325356
Summary:
The JumpThreading pass has several locations where to the variable name LI
refers to a LoadInst type. This is confusing and inhibits the ability to use
LI for LoopInfo as a member of the JumpThreading class. Minor formatting
and comments were also altered to reflect this change.
Reviewers: dberlin, kuba, spop, sebpop
Reviewed by: sebpop
Subscribers: sebpop, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42601
llvm-svn: 323695
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perform the
preversation was minimally altered and simply marked as
preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements such as threading across loop headers.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: mgorny, dmgreen, kuba, rnk, rsmith, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 322401
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 321825
Summary:
This replaces calls to getEntryCount().hasValue() with hasProfileData
that does the same thing. This refactoring is useful to do before adding
synthetic function entry counts but also a useful cleanup IMO even
otherwise. I have used hasProfileData instead of hasRealProfileData as
David had earlier suggested since I think profile implies "real" and I
use the phrase "synthetic entry count" and not "synthetic profile count"
but I am fine calling it hasRealProfileData if you prefer.
Reviewers: davidxl, silvas
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41461
llvm-svn: 321331
PRE in JumpThreading should not be able to hoist copy of non-speculable loads across
instructions that don't always transfer execution to their successors, otherwise they may
introduce an unsafe load which otherwise would not be executed.
The same problem for GVN was fixed as rL316975.
Differential Revision: https://reviews.llvm.org/D40347
llvm-svn: 321063
Summary:
See D37528 for a previous (non-deferred) version of this
patch and its description.
Preserves dominance in a deferred manner using a new class
DeferredDominance. This reduces the performance impact of
updating the DominatorTree at every edge insertion and
deletion. A user may call DDT->flush() within JumpThreading
for an up-to-date DT. This patch currently has one flush()
at the end of runImpl() to ensure DT is preserved across
the pass.
LVI is also preserved to help subsequent passes such as
CorrelatedValuePropagation. LVI is simpler to maintain and
is done immediately (not deferred). The code to perfom the
preversation was minimally altered and was simply marked
as preserved for the PassManager to be informed.
This extends the analysis available to JumpThreading for
future enhancements. One example is loop boundary threading.
Reviewers: dberlin, kuhar, sebpop
Reviewed By: kuhar, sebpop
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D40146
llvm-svn: 320612
JumpThreading now preserves dominance and lazy value information across the
entire pass. The pass manager is also informed of this preservation with
the goal of DT and LVI being recalculated fewer times overall during
compilation.
This change prepares JumpThreading for enhanced opportunities; particularly
those across loop boundaries.
Patch by: Brian Rzycki <b.rzycki@samsung.com>,
Sebastian Pop <s.pop@samsung.com>
Differential revision: https://reviews.llvm.org/D37528
llvm-svn: 314435
Consider this type of a loop:
for (...) {
...
if (...) continue;
...
}
Normally, the "continue" would branch to the loop control code that
checks whether the loop should continue iterating and which contains
the (often) unique loop latch branch. In certain cases jump threading
can "thread" the inner branch directly to the loop header, creating
a second loop latch. Loop canonicalization would then transform this
loop into a loop nest. The problem with this is that in such a loop
nest neither loop is countable even if the original loop was. This
may inhibit subsequent loop optimizations and be detrimental to
performance.
Differential Revision: https://reviews.llvm.org/D36404
llvm-svn: 312664
JumpThreading claims to preserve LVI, but it doesn't preserve
the analyses which LVI holds a reference to (e.g. the Dominator).
In the current pass manager infrastructure, after JT runs, the
PM frees these analyses (including DominatorTree) but preserves
LVI.
CorrelatedValuePropagation runs immediately after and queries
a corrupted domtree, causing weird miscompiles.
This commit disables the preservation of LVI for the time being.
Eventually, we should either move LVI to a proper dependency
tracking mechanism (i.e. an analyses shouldn't hold references
to other analyses and compute them on demand if needed), or
we should teach all the passes preserving LVI to preserve the
analyses LVI depends on.
The new pass manager has a mechanism to invalidate LVI in case
one of the analyses it depends on becomes invalid, so this problem
shouldn't exist (at least not in this immediate form), but handling
of analyses holding references is still a very delicate subject.
Fixes PR33917 (and rustc).
llvm-svn: 309355
Summary:
When simplifying unconditional branches from empty blocks, we pre-test if the
BB belongs to a set of loop headers and keep the block to prevent passes from
destroying canonical loop structure. However, the current algorithm fails if
the destination of the branch is a loop header. Especially when such a loop's
latch block is folded into loop header it results in additional backedges and
LoopSimplify turns it into a nested loop which prevent later optimizations
from being applied (e.g., loop unrolling and loop interleaving).
This patch augments the existing algorithm by further checking if the
destination of the branch belongs to a set of loop headers and defer
eliminating it if yes to LateSimplifyCFG.
Fixes PR33605: https://bugs.llvm.org/show_bug.cgi?id=33605
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: efriedma
Subscribers: ashutosh.nema, gberry, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35411
llvm-svn: 308422
Add the following pattern to TryToUnfoldSelectInCurrBB()
bb:
%p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
%c = cmp %p, 0
%s = select %c, trueval, falseval
The Select in the above pattern will be unfolded and then jump-threaded. The
current implementation does not allow CMP in the middle of PHI and Select.
Differential Revision: https://reviews.llvm.org/D34762
llvm-svn: 308050
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
Currently JumpThreading can use LazyValueInfo to analyze an 'and' or 'or' of compare if the compare is fed by a livein of a basic block. This can be used to to prove the condition can't be met for some predecessor and the jump from that predecessor can be moved to the false path of the condition.
But if the compare is something that InstCombine turns into an add and a single compare, it can't be analyzed because the livein is now an input to the add and not the compare.
This patch adds a new method to LVI to get a ConstantRange on an edge. Then we teach jump threading to detect the add livein feeding a compare and to get the ConstantRange and propagate it.
Differential Revision: https://reviews.llvm.org/D33262
llvm-svn: 306085