Summary:
Freestanding is *weird*. The standard allows it to differ in a bunch of odd
manners from regular C++, and the committee would like to improve that
situation. I'd like to make libc++ behave better with what freestanding should
be, so that it can be a tool we use in improving the standard. To do that we
need to try stuff out, both with "freestanding the language mode" and
"freestanding the library subset".
Let's start with the super basic: run the libc++ tests in freestanding, using
clang as the compiler, and see what works. The easiest hack to do this:
In utils/libcxx/test/config.py add:
self.cxx.compile_flags += ['-ffreestanding']
Run the tests and they all fail.
Why? Because in freestanding `main` isn't special. This "not special" property
has two effects: main doesn't get mangled, and main isn't allowed to omit its
`return` statement. The first means main gets mangled and the linker can't
create a valid executable for us to test. The second means we spew out warnings
(ew) and the compiler doesn't insert the `return` we omitted, and main just
falls of the end and does whatever undefined behavior (if you're luck, ud2
leading to non-zero return code).
Let's start my work with the basics. This patch changes all libc++ tests to
declare `main` as `int main(int, char**` so it mangles consistently (enabling us
to declare another `extern "C"` main for freestanding which calls the mangled
one), and adds `return 0;` to all places where it was missing. This touches 6124
files, and I apologize.
The former was done with The Magic Of Sed.
The later was done with a (not quite correct but decent) clang tool:
https://gist.github.com/jfbastien/793819ff360baa845483dde81170feed
This works for most tests, though I did have to adjust a few places when e.g.
the test runs with `-x c`, macros are used for main (such as for the filesystem
tests), etc.
Once this is in we can create a freestanding bot which will prevent further
regressions. After that, we can start the real work of supporting C++
freestanding fairly well in libc++.
<rdar://problem/47754795>
Reviewers: ldionne, mclow.lists, EricWF
Subscribers: christof, jkorous, dexonsmith, arphaman, miyuki, libcxx-commits
Differential Revision: https://reviews.llvm.org/D57624
llvm-svn: 353086
to reflect the new license. These used slightly different spellings that
defeated my regular expressions.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351648
This patch reverts the changes to tuple which fixed construction from
types derived from tuple. It breaks the code mentioned in llvm.org/PR31384.
I'll follow this commit up with a test case.
llvm-svn: 289773
Summary:
The standard requires tuple have the following constructors:
```
tuple(tuple<OtherTypes...> const&);
tuple(tuple<OtherTypes...> &&);
tuple(pair<T1, T2> const&);
tuple(pair<T1, T2> &&);
tuple(array<T, N> const&);
tuple(array<T, N> &&);
```
However libc++ implements these as a single constructor with the signature:
```
template <class TupleLike, enable_if_t<__is_tuple_like<TupleLike>::value>>
tuple(TupleLike&&);
```
This causes the constructor to reject types derived from tuple-like types; Unlike if we had all of the concrete overloads, because they cause the derived->base conversion in the signature.
This patch fixes this issue by detecting derived types and the tuple-like base they are derived from. It does this by creating an overloaded function with signatures for each of tuple/pair/array and checking if the possibly derived type can convert to any of them.
This patch fixes [PR17550]( https://llvm.org/bugs/show_bug.cgi?id=17550)
This patch
Reviewers: mclow.lists, K-ballo, mpark, EricWF
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27606
llvm-svn: 289727
Instead of storing double in double and then truncating to int, store int in long
and then widen to long long. This preserves test coverage (as these tests are
interested in various tuple conversions) while avoiding truncation warnings.
test/std/utilities/tuple/tuple.tuple/tuple.cnstr/const_pair.pass.cpp
Since we aren't physically truncating anymore, t1 is equal to p0.
test/std/utilities/tuple/tuple.tuple/tuple.cnstr/convert_copy.pass.cpp
One edit is different from the usual pattern. Previously, we were storing
double in double and then converting to A, which has an implicitly converting
constructor from int. Now, we're storing int in int and then converting to A,
avoiding the truncation.
Fixes D27542.
llvm-svn: 289109
This is a breaking change. The SFINAE required is instantiated the second
the class is instantiated, and this can cause hard SFINAE errors
when applied to references to incomplete types. Ex.
struct IncompleteType;
extern IncompleteType it;
std::tuple<IncompleteType&> t(it); // SFINAE will blow up.
llvm-svn: 276598
Summary: No declaration for the type `tuple` is given in c++03 or c++98 modes. Mark all tests that use the actual `tuple` type as UNSUPPORTED.
Reviewers: jroelofs, mclow.lists, danalbert
Reviewed By: danalbert
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5956
llvm-svn: 229808