Some records point to an LF_CLASS, LF_UNION, LF_STRUCTURE, or LF_ENUM
which is a forward reference and doesn't contain complete debug
information. In these cases, we'd like to be able to quickly locate the
full record. The TPI stream stores an array of pre-computed record hash
values, one for each type record. If we pre-process this on startup, we
can build a mapping from hash value -> {list of possible matching type
indices}. Since hashes of full records are only based on the name and or
unique name and not the full record contents, we can then use forward
ref record to compute the hash of what *would* be the full record by
just hashing the name, use this to get the list of possible matches, and
iterate those looking for a match on name or unique name.
llvm-pdbutil is updated to resolve forward references for the purposes
of testing (plus it's just useful).
Differential Revision: https://reviews.llvm.org/D52283
llvm-svn: 342656
There were several issues with the previous implementation.
1) There were no tests.
2) We didn't support creating PDBSymbolTypePointer records for
builtin types since those aren't described by LF_POINTER
records.
3) We didn't support a wide enough variety of builtin types even
ignoring pointers.
This patch fixes all of these issues. In order to add tests,
it's helpful to be able to ignore the symbol index id hierarchy
because it makes the golden output from the DIA version not match
our output, so I've extended the dumper to disable dumping of id
fields.
llvm-svn: 342493
Previously we would dump the names of enum types, but not their
enumerator values. This adds support for enumerator values. In
doing so, we have to introduce a general purpose mechanism for
caching symbol indices of field list members. Unlike global
types, FieldList members do not have a TypeIndex. So instead,
we identify them by the pair {TypeIndexOfFieldList, IndexInFieldList}.
llvm-svn: 342415
Previously for cv-qualified types, we would just ignore them
and they would never get printed. Now we can enumerate them
and cache them like any other symbol type.
llvm-svn: 342414
Naively computing the hash after the PDB data has been generated is in practice
as fast as other approaches I tried. I also tried online-computing the hash as
parts of the PDB were written out (https://reviews.llvm.org/D51887; that's also
where all the measuring data is) and computing the hash in parallel
(https://reviews.llvm.org/D51957). This approach here is simplest, without
being slower.
Differential Revision: https://reviews.llvm.org/D51956
llvm-svn: 342333
Eventually we need to be able to support nested types, which don't
have an associated CVType record. To handle this, remove the
CVType from all of the record classes, and instead store the
deserialized record. Then move the deserialization up to the thing
that creates the type. This actually makes error handling better
anyway as we can return an invalid symbol instead of asserting false.
llvm-svn: 342284
r342003 added support for emitting FPO data from the
DEBUG_S_FRAMEDATA subsection of the .debug$S section to the PDB
file. However, that is not the end of the story. FPO can end
up in two different destinations in a PDB, each corresponding to
a different FPO data source.
The case handled by r342003 involves copying data from the
DEBUG_S_FRAMEDATA subsection of the .debug$S section to the
"New FPO" stream in the PDB, which is then referred to by the
DBI stream. The case handled by this patch involves copying
records from the .debug$F section of an object file to the "FPO"
stream (or perhaps more aptly, the "Old FPO" stream) in the PDB
file, which is also referred to by the DBI stream.
The formats are largely similar, and the difference is mostly
only visible in masm generated object files, such as some of the
low-level CRT object files like memcpy. MASM doesn't appear to
support writing the DEBUG_S_FRAMEDATA subsection, and instead
just writes these records to the .debug$F section.
Although clang-cl does not emit a .debug$F section ever, lld still
needs to support it so we have good debugging for CRT functions.
Differential Revision: https://reviews.llvm.org/D51958
llvm-svn: 342080
Makes the produced pdbs more deterministic; before they'd contain 2 arbitary
bytes where this padding was.
Also reorder initialization to match the order of the fields in the struct (nfc)
llvm-svn: 341945
clang-format was getting confused due to the presence of a macro
invocation that was not terminated by a semicolon. Fixed this by
terminating the macro lines with semicolons and re-ran clang-format
on the file.
llvm-svn: 341864
- Log the reason for a PDB or precompiled-OBJ load failure
- Properly handle out-of-date PDB or precompiled-OBJ signature by displaying a corresponding error
- Slightly change behavior on PDB failure: any subsequent load attempt from another OBJ would result in the same error message being logged
- Slightly change behavior on PDB failure: retry with filename only if previous error was ENOENT ("no such file or directory")
- Tests: a. for native PDB errors; b. cover all the cases above
Differential Revision: https://reviews.llvm.org/D51559
llvm-svn: 341825
They were unintentionally calling DIA directly, which requires
Windows. We need to pass the -native flag, and this then required
fixing up one or two tests.
llvm-svn: 341731
In order to start testing this, I've added a new mode to
llvm-pdbutil which is only really useful for writing tests.
It just dumps the value of raw fields in record format.
This isn't really ideal and it won't allow us to test some
important cases, but it's better than nothing for now.
llvm-svn: 341729
Part of the responsibility of the native PDB reader is to cache
symbols the first time they are accessed, so they can then be
looked up by an ID. Furthermore, we need to resolve type indices
to records that we vend to the user, and other things. Previously
this code was all thrown together a bit haphazardly in the native
session class, but it makes sense to collect all of this into a
single class whose sole responsibility is to manage the collection
of known symbols.
llvm-svn: 341608
The way DIA SDK works is that when you request a symbol, it
gets assigned an internal identifier that is unique for the
life of the session. You can then use this identifier to
get back the same symbol, with all of the same internal state
that it had before, even if you "destroyed" the original
copy of the object you had.
This didn't work properly in our native implementation, and
if you destroyed an object for a particular symbol, then
requested the same symbol again, it would get assigned a new
ID and you'd get a fresh copy of the object. In order to fix
this some refactoring had to happen to properly reuse cached
objects. Some unittests are added to verify that symbol
reuse is taking place, making use of the new unittest input
feature.
llvm-svn: 341503
Following D50807, and heading towards D50664, this intermediary change does the following:
1. Upgrade all custom Error types in llvm/trunk/lib/DebugInfo/ to use the new StringError behavior (D50807).
2. Implement std::is_error_code_enum and make_error_code() for DebugInfo error enumerations.
3. Rename GenericError -> PDBError (the file will be renamed in a subsequent commit)
4. Update custom error messages to follow the same formatting: (\w\s*)+\.
5. Keep generic "file not found" (ENOENT) errors as they are in PDB code. Previously, there used to be a custom enumeration for that purpose.
6. Remove a few extraneous LF in log() implementations. Printing LF is a responsability at a higher level, not at the error level.
Differential Revision: https://reviews.llvm.org/D51499
llvm-svn: 341228
Summary:
This prefix was added in r333421, and it changed our dumper output to
say things like "CVRegEAX" instead of just "EAX". That's a functional
change that I'd rather avoid.
I tested GCC, Clang, and MSVC, and all of them support #pragma
push_macro. They don't issue warnings whem the macro is not defined
either.
I don't have a Mac so I can't test the real termios.h header, but I
looked at the termios.h sources online and looked for other conflicts.
I saw only the CR* macros, so those are the ones we work around.
Reviewers: zturner, JDevlieghere
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50851
llvm-svn: 339907
The reference implementation uses a case-insensitive string
comparison for strings of equal length. This will cause the
string "tEo" to compare less than "VUo". However we were using
a case sensitive comparison, which would generate the opposite
outcome. Switch to a case insensitive comparison. Also, when
one of the strings contains non-ascii characters, fallback to
a straight memcmp.
The only way to really test this is with a DIA test. Before this
patch, the test will fail (but succeed if link.exe is used instead
of lld-link). After the patch, it succeeds even with lld-link.
llvm-svn: 336464
It seems like the debugger first computes a symbol's bucket,
and then does a binary search of entries in the bucket using the
symbol's name in order to find it. If the bucket entries are not
in sorted order, this obviously won't work. After this patch a
couple of simple test cases show that we generate an exactly
identical GSI hash stream, which is very nice.
llvm-svn: 336405
The code to emit the pieces of the MSF file were actually in
PDBFileBuilder. Move this to MSFBuilder so that we can
theoretically emit an MSF without having a PDB file.
llvm-svn: 335789
Part of the DBI stream is a list of variable length structures
describing each module that contributes to the final executable.
One member of this structure is a section contribution entry that
describes the first section contribution in the output file for
the given module.
We have been leaving this structure unpopulated until now, so with
this patch it is now filled out correctly.
Differential Revision: https://reviews.llvm.org/D45832
llvm-svn: 330457
The DBI stream contains a list of module descriptors. At the
beginning of each descriptor is a structure representing the first
section contribution in the output file for that module. LLD
currently doesn't fill out this structure at all, but link.exe
does. So as a precursor to emitting this data in LLD, we first
need a way to dump it so that it can be checked.
This patch adds support for the dumping, and verifies via a test
that LLD emits bogus information.
llvm-svn: 330208
Using Config->is64() will treat ARM64 as Amd64, which is incorrect.
Furthermore, there are more esoteric architectures that could
theoretically be encountered. Just set it directly to the machine
type, which we already know anyway.
llvm-svn: 330157
Most of these are pretty trivial and obvious. Setting the toolchain
version to 14.11 is perhaps a little questionable, but we've been bitten
in the past where one of our version fields sidn't match MSVC's, and I
definitely don't want to go through that diagnosis again as it was
pretty time consuming and hard to track down.
I found all of these by using llvm-pdbutil export to dump the dbi and
pdb streams to a file, then using fc followed by llvm-pdbutil explain to
explain the mismatched bytes.
There are still some more, these are just the low hanging fruit.
Differential Revision: https://reviews.llvm.org/D45276
llvm-svn: 330130
Using this, you can use llvm-pdbutil to export the contents of a
stream to a binary file, then run explain on the binary file so
that it treats the offset as an offset into the stream instead
of an offset into a file. This makes it easy to compare the
contents of the same stream from two different files.
llvm-svn: 329207
The missing definitions are from cvconst.h shipped with DIA SDK.
Correct the url to MSDN for MemoryTypeEnum and set the underlying
type of PDB_StackFrameType and PDB_MemoryType to uint16_t.
llvm-svn: 329104
This command can dump the binary contents of a stream to a file.
This is useful when you want to do side-by-side comparisons of
a specific stream from two PDBs to examine the differences between
them. You can export both of them to a file, then open them up
side by side in a hex editor (for example), so as to eliminate any
differences that might arise from the contents being on different
blocks in the PDB.
In subsequent patches I plan to improve the "explain" subcommand
so that you can explain the contents of a binary file that isn't
necessarily a full PDB, but one of these dumped streams, by telling
the subcommand how to interpret the contents.
llvm-svn: 329002
This will show more detail when using `llvm-pdbutil explain` on an
offset in the DBI or PDB streams. Specifically, it will dig into
individual header fields and substreams to give a more precise
description of what the byte represents.
llvm-svn: 328878
Before this change, using dumpProperties() with PDBSymbolData
would look like this:
get_locationType: 3
1
After this change:
get_locationType: 3
get_value: 1
llvm-svn: 328590
This was reverted several times due to what ultimately turned out
to be incompatibilities in our serialized hash table format.
Several changes went in prior to this to fix those issues since
they were more fundamental and independent of supporting injected
sources, so now that those are fixed this change should hopefully
pass.
llvm-svn: 328363
When investigating bugs in PDB generation, the first step is
often to do the same link with link.exe and then compare PDBs.
But comparing PDBs is hard because two completely different byte
sequences can both be correct, so it hampers the investigation when
you also have to spend time figuring out not just which bytes are
different, but also if the difference is meaningful.
This patch fixes a couple of cases related to string table emission,
hash table emission, and the order in which we emit strings that
makes more of our bytes the same as the bytes generated by MS PDBs.
Differential Revision: https://reviews.llvm.org/D44810
llvm-svn: 328348
NFC, this just renames some methods to better express what they
do, and also adds a few helper methods to add some symmetry to the
API in a few places (for example there was a getStringFromId but not
a getIdFromString method in the string table).
llvm-svn: 328221
To resolve symbol context at a particular address, we need to
determine the compiland for the address. We are able to determine
the parent compiland of PDBSymbolFunc, PDBSymbolTypeUDT,
PDBSymbolTypeEnum symbols indirectly through line information.
However no such information is availabile for PDBSymbolData,
i.e. variables.
The Section Contribution table from PDBs has information about
each compiland's contribution to sections by address. For example,
a piece of a contribution looks like,
VA RelativeVA Sect No. Offset Length Compiland
14000087B0 000087B0 0001 000077B0 000000BB exe_main.obj
So given an address, it's possible to determine its compiland with
this information.
llvm-svn: 328178
The hash table is a list of buckets, and the *value* stored in
the bucket cannot be 0 since that is reserved. However, the code
here was incorrectly skipping over the 0'th bucket entirely.
The 0'th bucket is perfectly fine, just none of these buckets
can contain the value 0.
As a result, whenever there was a string where hash(S) % Size
was equal to 0, we would write the value in the next bucket
instead. We never caught this in our tests due to *another*
bug, which is that we would iterate the entire list of buckets
looking for the value, only using the hash value as a starting
point. However, the real algorithm stops when it finds 0 in
a bucket since it takes that to mean "the item is not in the
hash table".
The unit test is updated to carefully construct a set of hash
values that will cause one item to hash to 0 mod bucket count,
and the reader is also updated to return an error indicating that
the item is not found when it encounters a 0 bucket.
llvm-svn: 328162
This is still failing on a different bot this time due to some
issue related to hashing absolute paths. Reverting until I can
figure it out.
llvm-svn: 328014
The issue causing this to fail in certain configurations
should be fixed.
It was due to the fact that DIA apparently expects there to be
a null string at ID 1 in the string table. I'm not sure why this
is important but it seems to make a difference, so set it.
llvm-svn: 328002
Summary:
Redefine PDBSymbolCompiland::getSourceFileName() to return the filename (w/o directory) of the source file that is used to compile the compiland. This is because the result returned previously is ambiguous. It could be the filename, relative path or full path of the source file.
Move the implementation of SymbolFilePDB::GetSourceFileNameForPDBCompiland() into a new method PDBSymbolCompiland::getSourceFileFullPath().
Reviewers: zturner, rnk, llvm-commits
Reviewed By: zturner
Differential Revision: https://reviews.llvm.org/D44458
llvm-svn: 327910
Summary: This commit adds two methods to the PDBSymboFunc class used in parsing symbols. getLineNumbers() is used to determine a Function symbol's declaration and getCompilandId() is used to initialize the SymbolContext field sc.comp_unit.
Reviewers: zturner, rnk, llvm-commits
Reviewed By: zturner
Differential Revision: https://reviews.llvm.org/D44457
llvm-svn: 327909
Natvis is a debug language supported by Visual Studio for
specifying custom visualizers. The /NATVIS option is an
undocumented link.exe flag which will take a .natvis file
and "inject" it into the PDB. This way, you can ship the
debug visualizers for a program along with the PDB, which
is very useful for postmortem debugging.
This is implemented by adding a new "named stream" to the
PDB with a special name of /src/files/<natvis file name>
and simply copying the contents of the xml into this file.
Additionally, we need to emit a single stream named
/src/headerblock which contains a hash table of embedded
files to records describing them.
This patch adds this functionality, including the /NATVIS
option to lld-link.
Differential Revision: https://reviews.llvm.org/D44328
llvm-svn: 327895
There was some code that tried to calculate the number of 4-byte
words required to hold N bits, but it was instead computing the
number of bytes required to hold N bits. This was leading to
extraneous data being output into the hash table, which would
cause certain operations in DIA (the Microsoft PDB reader) to
fail.
llvm-svn: 327675
It previously only worked when the key and value types were
both 4 byte integers. We now have a use case for a non trivial
value type, so we need to extend it to support arbitrary value
types, which means templatizing it.
llvm-svn: 327647
Summary:
Some PDB symbols do not have a valid VA or RVA but have Addr by Section and Offset. For example, a variable in thread-local storage has the following properties:
get_addressOffset: 0
get_addressSection: 5
get_lexicalParentId: 2
get_name: g_tls
get_symIndexId: 12
get_typeId: 4
get_dataKind: 6
get_symTag: 7
get_locationType: 2
This change provides a new method to locate line numbers by Section and Offset from those symbols.
Reviewers: zturner, rnk, llvm-commits
Subscribers: asmith, JDevlieghere
Differential Revision: https://reviews.llvm.org/D44407
llvm-svn: 327601
Injected sources are basically a way to add actual source file content
to your PDB. Presumably you could use this for shipping your source code
with your debug information, but in practice I can only find this being
used for embedding natvis files inside of PDBs.
In order to effectively test LLVM's natvis file injection, we need a way
to dump the injected sources of a PDB in a way that is authoritative
(i.e. based on Microsoft's understanding of the PDB format, and not
LLVM's). To this end, I've added support for dumping injected sources
via DIA. I made a PDB file that used the /natvis option to generate a
test case.
Differential Revision: https://reviews.llvm.org/D44405
llvm-svn: 327428
Summary: This helps to determine the line number for a PDB type with definition
Reviewers: zturner, llvm-commits, rnk
Reviewed By: zturner
Subscribers: rengolin, JDevlieghere
Differential Revision: https://reviews.llvm.org/D44119
llvm-svn: 326857
For now this is NFC, but this small refactor opens the door to
letting us embed a hash of the PDB in the build id field of the
PDB.
Differential Revision: https://reviews.llvm.org/D43913
llvm-svn: 326453
This was originally reported as a bug with the symptom being "cvdump
crashes when printing an LLD-linked PDB that has an S_FILESTATIC record
in it". After some additional investigation, I determined that this was
a symptom of a larger problem, and in fact the real problem was in the
way we emitted the global PDB string table. As evidence of this, you can
take any lld-generated PDB, run cvdump -stringtable on it, and it would
return no results.
My hypothesis was that cvdump could not *find* the string table to begin
with. Normally it would do this by looking in the "named stream map",
finding the string /names, and using its value as the stream index. If
this lookup fails, then cvdump would fail to load the string table.
To test this hypothesis, I looked at the name stream map generated by a
link.exe PDB, and I emitted exactly those bytes into an LLD-generated
PDB. Suddenly, cvdump could read our string table!
This code has always been hacky and we knew there was something we
didn't understand. After all, there were some comments to the effect of
"we have to emit strings in a specific order, otherwise things don't
work". The key to fixing this was finally understanding this.
The way it works is that it makes use of a generic serializable hash map
that maps integers to other integers. In this case, the "key" is the
offset into a buffer, and the value is the stream number. If you index
into the buffer at the offset specified by a given key, you find the
name. The underlying cause of all these problems is that we were using
the identity function for the hash. i.e. if a string's offset in the
buffer was 12, the hash value was 12. Instead, we need to hash the
string *at that offset*. There is an additional catch, in that we have
to compute the hash as a uint32 and then truncate it to uint16.
Making this work is a little bit annoying, because we use the same hash
table in other places as well, and normally just using the identity
function for the hash function is actually what's desired. I'm not
totally happy with the template goo I came up with, but it works in any
case.
The reason we never found this bug through our own testing is because we
were building a /parallel/ hash table (in the form of an
llvm::StringMap<>) and doing all of our lookups and "real" hash table
work against that. I deleted all of that code and now everything goes
through the real hash table. Then, to test it, I added a unit test which
adds 7 strings and queries the associated values. I test every possible
insertion order permutation of these 7 strings, to verify that it really
does work as expected.
Differential Revision: https://reviews.llvm.org/D43326
llvm-svn: 325386
Summary:
- Fix a bug in PrettyBuiltinDumper that returns "void" as the name for
an unspecified builtin type. Since the unspecified param of a variadic
function is considered a builtin of unspecified type in PDBs, we set
"..." for its name.
- Provide a method to determine if a PDBSymbolFunc is variadic in
PrettyFunctionDumper since PDBSymbolFunc::getArgument() doesn't return the
last unspecified-type param.
- Add a pretty-func-dumper.test to test pretty dumping of variadic
functions.
Reviewers: zturner, llvm-commits
Reviewed By: zturner
Differential Revision: https://reviews.llvm.org/D41801
llvm-svn: 322608
It turns out this #include isn't used from Host.h anyway,
but by having it it causes circular include dependencies.
This issues only surfaced while I was working on a separate
patch, so I'm submitting this first so that it's independent
of the other, unrelated patch.
llvm-svn: 318489
Initial changes to support debugging PE/COFF files with LLDB on Windows through DIA SDK.
There is another set of changes required on the LLDB side before this does anything.
Differential Revision: https://reviews.llvm.org/D39517
llvm-svn: 318403
The list of register ids was previously written out in a couple of dirrent
places. This puts it in a .def file and also adds a few more registers (e.g.
the x87 regs) which should lead to more readable dumps, but I didn't include
the whole list since that seems unnecessary.
X86_MC::initLLVMToSEHAndCVRegMapping is pretty ugly, but at least it's not
relying on magic constants anymore. The TODO of using tablegen still stands.
Differential revision: https://reviews.llvm.org/D38480
llvm-svn: 314821
It is possible for two modules to have the same name if they are
archive members with the same name, or if we are doing LTO (in which
case all modules will have the name "lto.tmp").
Differential Revision: https://reviews.llvm.org/D37589
llvm-svn: 312744
We have llvm-readobj for dumping CodeView from object files, and
llvm-pdbutil has always been more focused on PDB. However,
llvm-pdbutil has a lot of useful options for summarizing debug
information in aggregate and presenting high level statistical
views. Furthermore, it's arguably better as a testing tool since
we don't have to write tests to conform to a state-machine like
structure where you match multiple lines in succession, each
depending on a previous match. llvm-pdbutil dumps much more
concisely, so it's possible to use single-line matches in many
cases where as with readobj tests you have to use multi-line
matches with an implicit state machine.
Because of this, I'm adding object file support to llvm-pdbutil.
In fact, this mirrors the cvdump tool from Microsoft, which also
supports both object files and pdb files. In the future we could
perhaps rename this tool llvm-cvutil.
In the meantime, this allows us to deep dive into object files
the same way we already can with PDB files.
llvm-svn: 312358
This adds a new command line option, -udt-stats, which breaks
down the stats of S_UDT records. These are one of the biggest
contributors to the size of /DEBUG:FASTLINK PDBs, so they need
some additional tools to be able to analyze their usage. This
option will dig into each S_UDT record and determine what kind
of record it points to, and then break down the statistics by
the target type. The goal here is to identify how our object
files differ from MSVC object files in S_UDT records, so that
we can output fewer of them and reach size parity.
llvm-svn: 312276
computeAddrMap function calls std::stable_sort with a comparison
function that computes deserialized symbols every time its called.
In the result deserializeAs<PublicSym32> is called 20-30 times per
symbol. It's much faster to calculate it beforehand and pass a
pointer to it to the comparison function.
Patch by Alex Telishev
Differential Revision: https://reviews.llvm.org/D36941
llvm-svn: 311373
This adds support for dumping a summary of module symbols
and CodeView debug chunks. This option prints a table for
each module of all of the symbols that occurred in the module
and the number of times it occurred and total byte size. Then
at the end it prints the totals for the entire file.
Additionally, this patch adds the -jmc (just my code) option,
which suppresses modules which are from external libraries or
linker imports, so that you can focus only on the object files
and libraries that originate from your own source code.
llvm-svn: 311338
Previously we were writing an empty globals stream. Windows
tools interpret this as "private symbols are not present in
this PDB", even when they are, so we need to fix this. Regardless,
without it we don't have information about global variables, so
we need to fix it anyway. This patch does that.
With this patch, the "lm" command in WinDbg correctly reports
that we have private symbols available, but the "dv" command
still refuses to display local variables.
Differential Revision: https://reviews.llvm.org/D36535
llvm-svn: 310743
In the refactor to merge the publics and globals stream, a bug
was introduced that wrote the wrong value for one of the fields
of the PublicsStreamHeader. This caused debugging in WinDbg
to break.
We had no way of dumping any of these fields, so in addition to
fixing the bug I've added dumping support for them along with a
test that verifies the correct value is written.
llvm-svn: 310439
The publics stream and globals stream are very similar. They both
contain a list of hash buckets that refer into a single shared stream,
the symbol record stream. Because of the need for each builder to manage
both an independent hash stream as well as a single shared record
stream, making the two builders be independent entities is not the right
design. This patch merges them into a single class, of which only a
single instance is needed to create all 3 streams. PublicsStreamBuilder
and GlobalsStreamBuilder are now merged into the single GSIStreamBuilder
class, which writes all 3 streams at once.
Note that this patch does not contain any functionality change. So we're
still not yet writing any records to the globals stream. All we're doing
is making it so that when we do start writing records to the globals,
this refactor won't have to be part of that patch.
Differential Revision: https://reviews.llvm.org/D36489
llvm-svn: 310438
This extends the native reader to enable llvm-pdbutil to list the enums in a
PDB and it includes a simple test. It does not yet list the values in the
enumerations, which requires an actual implementation of
NativeEnumSymbol::FindChildren.
To exercise this code, use a command like:
llvm-pdbutil pretty -native -enums foo.pdb
Differential Revision: https://reviews.llvm.org/D35738
llvm-svn: 310144
Summary:
PDB section contributions are supposed to use output section indices and
offsets, not input section indices and offsets.
This allows the debugger to look up the index of the module that it
should look up in the modules stream for symbol information. With this
change, windbg can now find line tables, but it still cannot print local
variables.
Fixes PR34048
Reviewers: zturner
Subscribers: hiraditya, ruiu, llvm-commits
Differential Revision: https://reviews.llvm.org/D36285
llvm-svn: 309987
The PDB reserves certain blocks for the FPM that describe which
blocks in the file are allocated and which are free. We weren't
filling that out at all, and in some cases we were even stomping
it with incorrect data. This patch writes a correct FPM.
Differential Revision: https://reviews.llvm.org/D36235
llvm-svn: 309896
Recently problems have been discovered in the way we write the FPM
(free page map). In order to fix this, we first need to establish
a baseline about what a correct FPM looks like using an MSVC
generated PDB, so that we can then make our own generated PDBs
match. And in order to do this, the dumper needs a mode where it
can dump an FPM so that we can write tests for it.
This patch adds a command to dump the FPM, as well as a test against
a known-good PDB.
llvm-svn: 309894
We don't write any actual symbols to this stream yet, but for
now we just create the stream and hook it up to the appropriate
places and give it a valid header.
Differential Revision: https://reviews.llvm.org/D35290
llvm-svn: 309608
With ASan, we would write about 512 bytes of malloc fill value to the
PDB, with some random bits ORed in here and there. Dumping the PDB would
always fail reliably.
llvm-svn: 309331