These tests all test very similar things, and use the same inferior.
They were only placed in separate folders to achieve better
paralelization. Now that we paralelize at a file level, this is no
longer relevant, and we can put them together again.
llvm-svn: 326159
This patch is the result of a discussion on lldb-dev, see
http://lists.llvm.org/pipermail/lldb-dev/2018-January/013111.html for
background.
For each test (should be eventually: each test configuration) a
separate build directory is created and we execute
make VPATH=$srcdir/path/to/test -C $builddir/path/to/test -f $srcdir/path/to/test/Makefile -I $srcdir/path/to/test
In order to make this work all LLDB tests need to be updated to find
the executable in the test build directory, since CWD still points at
the test's source directory, which is a requirement for unittest2.
Although we have done extensive testing, I'm expecting that this first
attempt will break a few bots. Please DO NOT HESITATE TO REVERT this
patch in order to get the bots green again. We will likely have to
iterate on this some more.
Differential Revision: https://reviews.llvm.org/D42281
llvm-svn: 323803
r317561 exposed an interesting bug (pr35228) in handling of simultaneous
watchpoint hits. Disabling the test until we can get that fixed.
llvm-svn: 317683
Summary:
The test incremented an atomic varible to trigger the watchpoint event.
On arm64 this compiled to a ldaxr/stlxr loop, with the watchpoint being
triggered in the middle of the loop. Hitting the watchpoint resets the
exclusive monitor, and forces the process to loop one more time, hitting
the watchpoint again, etc.
While it would be nice if the debugger was able to resume from this
situation, this is not trivial, and is not what this test is about.
Therefore, I propose to change this to a simple store to a normal
variable (which should still trip the watchpoint everywhere, but without
atomic loops) and file a bug to investigate the possibilities of
handling the watchpoints in atomic loops in a more reasonable way.
Reviewers: clayborg
Subscribers: aemerson, kristof.beyls, lldb-commits
Differential Revision: https://reviews.llvm.org/D39680
llvm-svn: 317561
Now that the wathpoint tests have their own category, we can easily skip
them on devices which don't have watchpoint support. Therefore, we don't
need an android xfail on each of these tests.
llvm-svn: 317276
Most of the watchpoint tests are organized into subtrees, so we can use the
file-based .categories approach to annotate them. The exception are the
concurrent_events tests, which needed to be annotated on a per-test basis.
The motivation behind this is to provide an easy way to disable watchpoint
tests on systems where the watchpoint functionality is not present/unreliable.
llvm-svn: 317004
Summary:
This aims to replace the different decorators we've had on each libc++
test with a single solution. Each libc++ will be assigned to the
"libc++" category and a single central piece of code will decide whether
we are actually able to run libc++ test in the given configuration by
enabling or disabling the category (while giving the user the
opportunity to override this).
I started this effort because I wanted to get libc++ tests running on
android, and none of the existing decorators worked for this use case:
- skipIfGcc - incorrect, we can build libc++ executables on android
with gcc (in fact, after this, we can now do it on linux as well)
- lldbutil.skip_if_library_missing - this checks whether libc++.so is
loaded in the proces, which fails in case of a statically linked
libc++ (this makes copying executables to the remote target easier to
manage).
To make this work I needed to split out the pseudo_barrier code from the
force-included file, as libc++'s atomic does not play well with gcc on
linux, and this made every test fail, even though we need the code only
in the threading tests.
So far, I am only annotating one of the tests with this category. If
this does not break anything, I'll proceed to update the rest.
Reviewers: jingham, zturner, EricWF
Subscribers: srhines, lldb-commits
Differential Revision: https://reviews.llvm.org/D30984
llvm-svn: 299028
Otherwise, they tend to generate filename too long errors.
They already contain the same test name in the directory, file, and class names,
so no information is really lost here.
llvm-svn: 284987
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This change breaks up the monolithic TestConcurrentEvents.py into a
separate subdir per test method. This allows them to run concurrently,
reduces the chance of a timeout occurring during normal operation, and
allows us to home in on any test methods that may be locking up.
This is step one in the process of squashing timeouts in these test
methods.
The reason for breaking each test method into its own file is to make it
very clear to us if there are a subset of the tests that do in fact lock
up frequently. This will limit how much hunting we need to do to
recreate it.
The reason for putting each file in a separate subdirectory is so that
our concurrent test runner can run multiple test files at the same time.
The unit of serialization in the LLDB test suite is the test directory,
so moving them into separate directories enables the test runner to do
more at the same time.
This change introduces usage of VPATH from gnu make. I use that to
facilitate keeping a single copy of the main.cpp in the parent
concurrent_events directory. Initially I had tried specifying the source
file as ../main.cpp, but our current makefile rules get confused by that
and then also build the output into the parent directory, which defeats
the ability to run each of the test methods concurrently. In the event
that not all systems support VPATH, I can do a bit of surgery on the
Makefile rules and attempt to make it smarter with regards to relative
paths to source files used in the build.
llvm-svn: 276478
Summary:
TestExitDuringStep was very rarely hanging on the buildbots. I can't be sure, but I believe this
was because of the fact that it declared its pseudo_barrier variable as "volatile int", which is
not sufficient to guarantee corectness (also, all other tests used atomic variables for this, and
they were passing reliably AFAIK). Besides switching to an atomic variable in this test as well,
I have also took this opportunity to unify all the copies of the pseudo_barrier code to a single
place to reduce the chance of this happening again.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20065
llvm-svn: 269025
This doesn't attempt to move every decorator. The reason for
this is that it requires touching every single test file to import
decorators.py. I would like to do this in a followup patch, but
in the interest of keeping the patches as bite-sized as possible,
I've only attempted to move the underlying common decorators first.
A few tests call these directly, so those tests are updated as part
of this patch.
llvm-svn: 259807
TestConcurrentEvents was marked with a XFAIL decorator at class level, which actually does not
work, and causes the class to be silently skipped everywhere. It seems that making it work at
class level is quite a difficult task, so I will just move it to the individual test methods. I
will follow this up with a commit which makes the decorator blow up in case someone tries to
apply it to a class in the future.
llvm-svn: 257901
This module was originally intended to be imported by top-level
scripts to be able to find the LLDB packages and third party
libraries. Packages themselves shouldn't need to import it,
because by the time it gets into the package, the top-level
script should have already done this. Indeed, it was just
adding the same values to sys.path multiple times, so this
patch is essentially no functional change.
To make sure it doesn't get re-introduced, we also delete the
`use_lldb_suite` module from `lldbsuite/test`, although the
original copy still remains in `lldb/test`
llvm-svn: 251963
For convenience, we had added the folder that dotest.py was in
to sys.path, so that we could easily write things like
`import lldbutil` from anywhere and any test. This introduces
a subtle problem when using Python's package system, because when
unittest2 imports a particular test suite, the test suite is detached
from the package. Thus, writing "import lldbutil" from dotest imports
it as part of the package, and writing the same line from a test
does a fresh import since the importing module was not part of
the same package.
The real way to fix this is to use absolute imports everywhere. Instead
of writing "import lldbutil", we need to write "import
lldbsuite.test.util". This patch fixes up that and all other similar
cases, and additionally removes the script directory from sys.path
to ensure that this can't happen again.
llvm-svn: 251886
This is the conclusion of an effort to get LLDB's Python code
structured into a bona-fide Python package. This has a number
of benefits, but most notably the ability to more easily share
Python code between different but related pieces of LLDB's Python
infrastructure (for example, `scripts` can now share code with
`test`).
llvm-svn: 251532