I'm removing a misplaced pair of more specific folds from InstCombine in this patch as well,
so we know where those folds are happening in InstSimplify.
llvm-svn: 277738
This removes the restriction for the icmp constant, but as noted by the FIXME comments,
we still need to change individual checks for binop operand constants.
llvm-svn: 277629
Making smaller pieces out of some of these ~1000 line functions should make
it easier to incrementally upgrade them to handle vector types.
llvm-svn: 276304
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
In r271810 ( http://reviews.llvm.org/rL271810 ), I loosened the check
above this to work for any Constant rather than ConstantInt. AFAICT,
that part makes sense if we can determine that the shrunken/extended
constant remained equal. But it doesn't make sense for this later
transform where we assume that the constant DID change.
This could assert for a ConstantExpr:
https://llvm.org/bugs/show_bug.cgi?id=28011
And it could be wrong for a vector as shown in the added regression test.
llvm-svn: 271908
Change the name of the ICmpInst to 'ICmp' and the Constant (was a ConstantInt) to 'C',
so that it's hopefully clearer that 'CI' refers to CastInst in this context.
While we're scrubbing, fix the documentation comment and use 'auto' with 'dyn_cast'.
llvm-svn: 271817
This bug was introduced in r269728 and is the likely cause of many stage 2 ubsan bot failures.
I'll add a test in a follow-up commit assuming this fixes things properly.
llvm-svn: 269797
Fix a bug introduced with rL269426 :
[InstCombine] canonicalize* LE/GE vector integer comparisons to LT/GT (PR26701, PR26819)
We were assuming that a ConstantDataVector / ConstantVector / ConstantAggregateZero operand of
an ICMP was composed of ConstantInt elements, but it might have ConstantExpr or UndefValue
elements. Handle those appropriately.
Also, refactor this function to join the scalar and vector paths and eliminate the switches.
Differential Revision: http://reviews.llvm.org/D20289
llvm-svn: 269728
*We don't currently handle the edge case constants (min/max values), so it's not a complete
canonicalization.
To fully solve the motivating bugs, we need to enhance this to recognize a zero vector
too because that's a ConstantAggregateZero which is a ConstantData, not a ConstantVector
or a ConstantDataVector.
Differential Revision: http://reviews.llvm.org/D17859
llvm-svn: 269426
This reapplies commit r268521, that was reverted in r268530 due to a test failure in select-implied.ll
Modified the test case to reflect the new change.
llvm-svn: 268557
The functionality contained within getIntrinsicIDForCall is two-fold: it
checks if a CallInst's callee is a vectorizable intrinsic. If it isn't
an intrinsic, it attempts to map the call's target to a suitable
intrinsic.
Move the mapping functionality into getIntrinsicForCallSite and rename
getIntrinsicIDForCall to getVectorIntrinsicIDForCall while
reimplementing it in terms of getIntrinsicForCallSite.
llvm-svn: 266801
Removed some unused headers, replaced some headers with forward class declarations.
Found using simple scripts like this one:
clear && ack --cpp -l '#include "llvm/ADT/IndexedMap.h"' | xargs grep -L 'IndexedMap[<]' | xargs grep -n --color=auto 'IndexedMap'
Patch by Eugene Kosov <claprix@yandex.ru>
Differential Revision: http://reviews.llvm.org/D19219
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 266595
InstCombine wants to optimize compares of calls to fabs with zero.
However, we didn't have the necessary legality checking to verify that
the function call had the same behavior as fabs.
llvm-svn: 266452
https://llvm.org/bugs/show_bug.cgi?id=27105
We can check if all bits outside of a constant mask are set with a
single constant.
As noted in the bug report, although this form should be considered the
canonical IR, backends may want to transform this into an 'andn' / 'andc'
comparison against zero because that could be a single machine instruction.
Differential Revision: http://reviews.llvm.org/D18842
llvm-svn: 266362
Remove an ad-hoc transform in InstCombine and replace it with more
general machinery (ValueTracking, InstructionSimplify and VectorUtils).
This fixes PR27332.
llvm-svn: 266175
When checking whether an smin is positive, we can move the comparison to one of the inputs if the other is known positive. If the known positive one is the min, then the other can't be negative. If the other is the min, then we compute the min.
Differential Revision: http://reviews.llvm.org/D17873
llvm-svn: 263059
For some cases, InstCombine replaces the sequence of xor/sub instruction
followed by cmp instruction into a single cmp instruction.
However, this replacement may result suboptimal result especially when
the xor/sub has more than one use, as discussed in
bug 26465 (https://llvm.org/bugs/show_bug.cgi?id=26465).
This patch make the replacement happen only when xor/sub has only one
use.
Differential Revision: http://reviews.llvm.org/D16915
Patch by Taewook Oh!
llvm-svn: 260695
This miscompile came about because we tried to use a transform which was
only appropriate for xor operators when addition was present.
This fixes PR26407.
llvm-svn: 259375
This contains a fix for the issue that caused the revert:
we no longer assume that we can insert instructions after the
instruction that produces the base pointer. We previously
assumed that this would be ok, because the instruction produces
a value and therefore is not a terminator. This is false for invoke
instructions. We will now insert these new instruction directly
at the location of the users.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257897
In setInsertionPoint if the value is not a PHI, Instruction or
Argument it should be a Constant, not a ConstantExpr.
Original commit message:
[InstCombine] Look through PHIs, GEPs, IntToPtrs and PtrToInts to expose more constants when comparing GEPs
Summary:
When comparing two GEP instructions which have the same base pointer
and one of them has a constant index, it is possible to only compare
indices, transforming it to a compare with a constant. This removes
one use for the GEP instruction with the constant index, can reduce
register pressure and can sometimes lead to removing the comparisson
entirely.
InstCombine was already doing this when comparing two GEPs if the base
pointers were the same. However, in the case where we have complex
pointer arithmetic (GEPs applied to GEPs, PHIs of GEPs, conversions to
or from integers, etc) the value of the original base pointer will be
hidden to the optimizer and this transformation will be disabled.
This change detects when the two sides of the comparison can be
expressed as GEPs with the same base pointer, even if they don't
appear as such in the IR. The transformation will convert all the
pointer arithmetic to arithmetic done on indices and all the relevant
uses of GEPs to GEPs with a common base pointer. The GEP comparison
will be converted to a comparison done on indices.
Reviewers: majnemer, jmolloy
Subscribers: hfinkel, jevinskie, jmolloy, aadg, llvm-commits
Differential Revision: http://reviews.llvm.org/D15146
llvm-svn: 257164