This patch removes hidden codegen flag -print-schedule effectively reverting the
logic originally committed as r300311
(https://llvm.org/viewvc/llvm-project?view=revision&revision=300311).
Flag -print-schedule was originally introduced by r300311 to address PR32216
(https://bugs.llvm.org/show_bug.cgi?id=32216). That bug was about adding "Better
testing of schedule model instruction latencies/throughputs".
These days, we can use llvm-mca to test scheduling models. So there is no longer
a need for flag -print-schedule in LLVM. The main use case for PR32216 is
now addressed by llvm-mca.
Flag -print-schedule is mainly used for debugging purposes, and it is only
actually used by x86 specific tests. We already have extensive (latency and
throughput) tests under "test/tools/llvm-mca" for X86 processor models. That
means, most (if not all) existing -print-schedule tests for X86 are redundant.
When flag -print-schedule was first added to LLVM, several files had to be
modified; a few APIs gained new arguments (see for example method
MCAsmStreamer::EmitInstruction), and MCSubtargetInfo/TargetSubtargetInfo gained
a couple of getSchedInfoStr() methods.
Method getSchedInfoStr() had to originally work for both MCInst and
MachineInstr. The original implmentation of getSchedInfoStr() introduced a
subtle layering violation (reported as PR37160 and then fixed/worked-around by
r330615).
In retrospect, that new API could have been designed more optimally. We can
always query MCSchedModel to get the latency and throughput. More importantly,
the "sched-info" string should not have been generated by the subtarget.
Note, r317782 fixed an issue where "print-schedule" didn't work very well in the
presence of inline assembly. That commit is also reverted by this change.
Differential Revision: https://reviews.llvm.org/D57244
llvm-svn: 353043
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
Instruction abs.[ds] is not generating correct result when working
with NaNs for revisions prior mips32r6 and mips64r6.
To generate a sequence which always produce a correct result, but also
to allow user more control on how his code is compiled, attribute
+abs2008 is added, so user can choose legacy or 2008.
By default legacy mode is used on revisions prior R6. Mips32r6 and
mips64r6 use abs2008 mode by default.
Differential Revision: https://reviews.llvm.org/D35983
llvm-svn: 352370
Lower G_USUBO and G_USUBE. Add narrowScalar for G_SUB.
Legalize and select G_SUB for MIPS 32.
Differential Revision: https://reviews.llvm.org/D53416
llvm-svn: 352351
Select zero extending and sign extending load for MIPS32.
Use size from MachineMemOperand to determine number of bytes to load.
Differential Revision: https://reviews.llvm.org/D57099
llvm-svn: 352038
Use CombinerHelper to combine extending load instructions.
G_LOAD combined with G_ZEXT, G_SEXT or G_ANYEXT gives G_ZEXTLOAD,
G_SEXTLOAD or G_LOAD with same type as def of extending instruction
respectively.
Similarly G_ZEXTLOAD combined with G_ZEXT gives G_ZEXTLOAD and
G_SEXTLOAD combined with G_SEXT gives G_SEXTLOAD with same type
as def of extending instruction.
Differential Revision: https://reviews.llvm.org/D56914
llvm-svn: 352037
This reapplies commit r351987 with a failed test fix. Now the test
accepts both DW_OP_GNU_push_tls_address and DW_OP_form_tls_address
opcode.
Original commit message:
```
This is a fix for a regression introduced by the rL348194 commit. In
that change new type (MEK_DTPREL) of MipsMCExpr expression was added,
but in some places of the code this type of expression considered as
unexpected.
This change fixes the bug. The MEK_DTPREL type of expression is used for
marking TLS DIEExpr only and contains a regular sub-expression. Where we
need to handle the expression, we retrieve the sub-expression and
handle it in a common way.
```
llvm-svn: 352034
This is a fix for a regression introduced by the rL348194 commit. In
that change new type (MEK_DTPREL) of MipsMCExpr expression was added,
but in some places of the code this type of expression considered as
unexpected.
This change fixes the bug. The MEK_DTPREL type of expression is used for
marking TLS DIEExpr only and contains a regular sub-expression. Where we
need to handle the expression, we retrieve the sub-expression and
handle it in a common way.
llvm-svn: 351987
For AMDGPU the shift amount is never 64-bit, and
this needs to use a 32-bit shift.
X86 uses i8, but seemed to be hacking around this before.
llvm-svn: 351882
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The callee address is added as an optional operand (MCSymbol) in
AdjustInstrPostInstrSelection() and then used by asm printer to insert:
'.reloc tmplabel, R_MIPS_JALR, symbol
tmplabel:'.
Controlled with '-mips-jalr-reloc', default is true.
Differential revision: https://reviews.llvm.org/D56694
llvm-svn: 351485
https://reviews.llvm.org/D52803
This patch adds support to continuously CSE instructions during
each of the GISel passes. It consists of a GISelCSEInfo analysis pass
that can be used by the CSEMIRBuilder.
llvm-svn: 351283
With this patch, shifts are lowered to optimal number of instructions
necessary to shift types larger than the general purpose register size.
This resolves PR/32293.
Thanks to Kyle Butt for reporting the issue!
Differential Revision: https://reviews.llvm.org/D56320
llvm-svn: 351059
Introduce GlobalISel pre legalizer pass for MIPS.
It will be used to cope with instructions that require
combining before legalization.
Differential Revision: https://reviews.llvm.org/D56269
llvm-svn: 351046
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
The following code requests 64-bit PC-relative relocations unsupported
by MIPS ABI. Now it triggers an assertion. It's better to show an error
message.
```
foo:
.quad bar - foo
```
llvm-svn: 350152
Add widen scalar for type index 1 (i1 condition) for G_SELECT.
Select G_SELECT for pointer, s32(integer) and smaller low level
types on MIPS32.
Differential Revision: https://reviews.llvm.org/D56001
llvm-svn: 350063
Add support for s64 libcalls for G_SDIV, G_UDIV, G_SREM and G_UREM
and use integer type of correct size when creating arguments for
CLI.lowerCall.
Select G_SDIV, G_UDIV, G_SREM and G_UREM for types s8, s16, s32 and s64
on MIPS32.
Differential Revision: https://reviews.llvm.org/D55651
llvm-svn: 349499
Add narrowScalar for G_AND and G_XOR.
Legalize G_AND G_OR and G_XOR for types other then s32
with clampScalar on MIPS32.
Differential Revision: https://reviews.llvm.org/D55362
llvm-svn: 349475
This patch introduces a generic function to determine whether a given vector type is known to be a splat value for the specified demanded elements, recursing up the DAG looking for BUILD_VECTOR or VECTOR_SHUFFLE splat patterns.
It also keeps track of the elements that are known to be UNDEF - it returns true if all the demanded elements are UNDEF (as this may be useful under some circumstances), so this needs to be handled by the caller.
A wrapper variant is also provided that doesn't take the DemandedElts or UndefElts arguments for cases where we just want to know if the SDValue is a splat or not (with/without UNDEFS).
I had hoped to completely remove the X86 local version of this function, but I'm seeing some regressions in shift/rotate codegen that will take a little longer to fix and I hope to get this in sooner so I can continue work on PR38243 which needs more capable splat detection.
Differential Revision: https://reviews.llvm.org/D55426
llvm-svn: 348953
https://reviews.llvm.org/D55294
Previously MachineIRBuilder::buildInstr used to accept variadic
arguments for sources (which were either unsigned or
MachineInstrBuilder). While this worked well in common cases, it doesn't
allow us to build instructions that have multiple destinations.
Additionally passing in other optional parameters in the end (such as
flags) is not possible trivially. Also a trivial call such as
B.buildInstr(Opc, Reg1, Reg2, Reg3)
can be interpreted differently based on the opcode (2defs + 1 src for
unmerge vs 1 def + 2srcs).
This patch refactors the buildInstr to
buildInstr(Opc, ArrayRef<DstOps>, ArrayRef<SrcOps>)
where DstOps and SrcOps are typed unions that know how to add itself to
MachineInstrBuilder.
After this patch, most invocations would look like
B.buildInstr(Opc, {s32, DstReg}, {SrcRegs..., SrcMIBs..});
Now all the other calls (such as buildAdd, buildSub etc) forward to
buildInstr. It also makes it possible to build instructions with
multiple defs.
Additionally in a subsequent patch, we should make it possible to add
flags directly while building instructions.
Additionally, the main buildInstr method is now virtual and other
builders now only have to override buildInstr (for say constant
folding/cseing) is straightforward.
Also attached here (https://reviews.llvm.org/F7675680) is a clang-tidy
patch that should upgrade the API calls if necessary.
llvm-svn: 348815
When replacing jal with jalr, also emit '.reloc R_MIPS_JALR' (R_MICROMIPS_JALR
for micromips). The linker might then be able to turn jalr into a direct
call.
Add '-mips-jalr-reloc' to enable/disable this feature (default is true).
Differential revision: https://reviews.llvm.org/D55292
llvm-svn: 348760
Adds fatal errors for any target that does not support the Tiny or Kernel
codemodels by rejigging the getEffectiveCodeModel calls.
Differential Revision: https://reviews.llvm.org/D50141
llvm-svn: 348585
https://reviews.llvm.org/D54980
This provides a standard API across GISel passes to observe and notify
passes about changes (insertions/deletions/mutations) to MachineInstrs.
This patch also removes the recordInsertion method in MachineIRBuilder
and instead provides method to setObserver.
Reviewed by: vkeles.
llvm-svn: 348406
The `DIEExpr` is used in debug information entries for either TLS variables
or call sites. For now the last case is unsupported for targets with delay
slots, for MIPS in particular.
The `DIEExpr::EmitValue` method calls a virtual `EmitDebugThreadLocal`
routine which, in case of MIPS, always emits either `.dtprelword` or
`.dtpreldword` directives. That is okay for "main" code, but in unit
tests `DIEExpr` instances can be created not for TLS variables only even
on MIPS hosts. That is a reason of the `TestDWARF32Version5Addr8AllForms`
failure because handling of the `R_MIPS_TLS_DTPREL` relocation writes
incorrect value into dwarf structures. And anyway unconditional emitting
of `.dtprelword` directives will be incorrect when/if debug information
entries for call sites become supported on MIPS.
The patch solves the problem by wrapping expression created in the
`MipsTargetObjectFile::getDebugThreadLocalSymbol` method in to the
`MipsMCExpr` expression with a new `MEK_DTPREL` tag. This tag is
recognized in the `MipsAsmPrinter::EmitDebugThreadLocal` method and
`.dtprelword` directives created in this case only. In other cases the
expression saved as a regular data.
Differential Revision: http://reviews.llvm.org/D54937
llvm-svn: 348194
This reverts r294500. DwarfCompileUnit::addAddressExpr uses DIEExpr
for PCOffset. In that case the expression is unrelated to thread locals
and so emitting a value of the DIEExpr does not have to always mean
emit-debug-thread-local.
llvm-svn: 347744
R_MIPS_JALR/R_MICROMIPS_JALR can now be parsed in .s files and emitted to .o.
They are still not generated with JALR.
Differential revision: https://reviews.llvm.org/D54721
llvm-svn: 347398
Set operands order for G_MERGE_VALUES and G_UNMERGE_VALUES so
that least significant bits always go first, regardless of endianness.
Differential Revision: https://reviews.llvm.org/D54098
llvm-svn: 346305
The `sigrie` instruction signals a Reserved Instruction Exception.
This patch adds support for assembling / disassembling the instruction.
Differential Revision: http://reviews.llvm.org/D53861
llvm-svn: 346230
Expand on LONG_BRANCH_LUi and LONG_BRANCH_(D)ADDiu pseudo
instructions by creating variants which support
less operands/accept GPR64Opnds as their operand in order
to appease the machine verifier pass.
Differential Revision: https://reviews.llvm.org/D53977
llvm-svn: 346133
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
When matching MipsISD::JmpLink t9, TargetExternalSymbol:i32'...',
wrong JALR16_MM is selected. This patch adds missing pattern for
JmpLink, so that JAL instruction is selected.
Differential Revision: https://reviews.llvm.org/D53366
llvm-svn: 345830
In MipsBranchExpansion::splitMBB, upon splitting
a block with two direct branches, remove the successor
of the newly created block (which inherits successors from
the original block) which is pointed to by the last
branch in the original block only if the targets of two
branches differ.
This is to fix the failing test when ran with
-verify-machineinstrs enabled.
Differential Revision: https://reviews.llvm.org/D53756
llvm-svn: 345821
Summary:
Changes all uses of minnan/maxnan to minimum/maximum
globally. These names emphasize that the semantic difference between
these operations is more than just NaN-propagation.
Reviewers: arsenm, aheejin, dschuff, javed.absar
Subscribers: jholewinski, sdardis, wdng, sbc100, jgravelle-google, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D53112
llvm-svn: 345218
When a landing pad is calculated in a program that is compiled
for micromips, it will point to an even address. Such an error will
cause a segmentation fault, as the instructions in micromips are
aligned on odd addresses. This patch sets the last bit of the offset
where a landing pad is, to 1, which will effectively be
an odd address and point to the instruction exactly.
Differential Revision: https://reviews.llvm.org/D52985
llvm-svn: 344591
When compiling static executable for micromips, CFI symbols
are incorrectly labeled as MICROMIPS, which cause
".eh_frame_hdr refers to overlapping FDEs." error.
This patch does not label CFI symbols as MICROMIPS, and FDEs do not
overlap anymore. This patch also exposes another bug, which is fixed
here: https://reviews.llvm.org/D52985
Differential Revision: https://reviews.llvm.org/D52987
llvm-svn: 344516
When compiling static executable for micromips, CFI symbols
are incorrectly labeled as MICROMIPS, which cause
".eh_frame_hdr refers to overlapping FDEs." error.
This patch does not label CFI symbols as MICROMIPS, and FDEs do not
overlap anymore. This patch also exposes another bug, which is fixed
here: https://reviews.llvm.org/D52985
Differential Revision: https://reviews.llvm.org/D52987
llvm-svn: 344511