This adds support for the MCU psABI in a way different from r251223 and r251224,
basically reverting most of these two patches. The problem with the approach
taken in r251223/4 is that it only handled libcalls that originated from the backend.
However, the mid-end also inserts quite a few libcalls and assumes these use the
platform's default calling convention.
The previous patch tried to insert inregs when necessary both in the FE and,
somewhat hackily, in the CG. Instead, we now define a new default calling convention
for the MCU, which doesn't use inreg marking at all, similarly to what x86-64 does.
Differential Revision: http://reviews.llvm.org/D15054
llvm-svn: 256494
Almost all these changes are conditioned and only apply to the new
x86-64 f128 type configuration, which will be enabled in a follow up
patch. They are required together to make new f128 work. If there is
any error, we should fix or revert them as a whole.
These changes should have no impact to current configurations.
* Relax type legalization checks to accept new f128 type configuration,
whose TypeAction is TypeSoftenFloat, not TypeLegal, but also has
TLI.isTypeLegal true.
* Relax GetSoftenedFloat to return in some cases f128 type SDValue,
which is TLI.isTypeLegal but not "softened" to i128 node.
* Allow customized FABS, FNEG, FCOPYSIGN on new f128 type configuration,
to generate optimized bitwise operators for libm functions.
* Enhance related Lower* functions to handle f128 type.
* Enhance DAGTypeLegalizer::run, SoftenFloatResult, and related functions
to keep new f128 type in register, and convert f128 operators to library calls.
* Fix Combiner, Emitter, Legalizer routines that did not handle f128 type.
* Add ExpandConstant to handle i128 constants, ExpandNode
to handle ISD::Constant node.
* Add one more parameter to getCommonSubClass and firstCommonClass,
to guarantee that returned common sub class will contain the specified
simple value type.
This extra parameter is used by EmitCopyFromReg in InstrEmitter.cpp.
* Fix infinite loop in getTypeLegalizationCost when f128 is the value type.
* Fix printOperand to handle null operand.
* Enhance ISD::BITCAST node to handle f128 constant.
* Expand new f128 type for BR_CC, SELECT_CC, SELECT, SETCC nodes.
* Enhance X86AsmPrinter to emit f128 values in comments.
Differential Revision: http://reviews.llvm.org/D15134
llvm-svn: 254653
When using the MCU psABI, compiler-generated library calls should pass
some parameters in-register. However, since inreg marking for x86 is currently
done by the front end, it will not be applied to backend-generated calls.
This is a workaround for PR3997, which describes a similar issue for -mregparm.
Differential Revision: http://reviews.llvm.org/D13977
llvm-svn: 251223
The 'common' section TLS is not implemented.
Current C/C++ TLS variables are not placed in common section.
DWARF debug info to get the address of TLS variables is not generated yet.
clang and driver changes in http://reviews.llvm.org/D10524
Added -femulated-tls flag to select the emulated TLS model,
which will be used for old targets like Android that do not
support ELF TLS models.
Added TargetLowering::LowerToTLSEmulatedModel as a target-independent
function to convert a SDNode of TLS variable address to a function call
to __emutls_get_address.
Added into lib/Target/*/*ISelLowering.cpp to call LowerToTLSEmulatedModel
for TLSModel::Emulated. Although all targets supporting ELF TLS models are
enhanced, emulated TLS model has been tested only for Android ELF targets.
Modified AsmPrinter.cpp to print the emutls_v.* and emutls_t.* variables for
emulated TLS variables.
Modified DwarfCompileUnit.cpp to skip some DIE for emulated TLS variabls.
TODO: Add proper DIE for emulated TLS variables.
Added new unit tests with emulated TLS.
Differential Revision: http://reviews.llvm.org/D10522
llvm-svn: 243438
Current implementation handles unordered comparison poorly in soft-float mode.
Consider (a ULE b) which is a <= b. It is lowered to (ledf2(a, b) <= 0 || unorddf2(a, b) != 0) (in general). We can do better job by lowering it to (__gtdf2(a, b) <= 0).
Such replacement is true for other CMP's (ult, ugt, uge). In general, we just call same function as for ordered case but negate comparison against zero.
Differential Revision: http://reviews.llvm.org/D10804
llvm-svn: 242280
It had accidently accepted a symbol+offset value (and emitted
incorrect code for it, keeping only the offset part) instead of
properly reporting the constraint as invalid.
Differential Revision: http://reviews.llvm.org/D11039
llvm-svn: 242040
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, llvm-commits, rafael, yaron.keren
Differential Revision: http://reviews.llvm.org/D11037
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241776
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
Summary:
SelectionDAG itself is not invoking directly the DataLayout in the
TargetMachine, but the "TargetLowering" class is still using it. I'll
address it in a following commit.
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11000
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241618
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
There is some functional change here because it changes target code from
atoi(3) to StringRef::getAsInteger which has error checking. For valid
constraints there should be no difference.
llvm-svn: 241411
We had a hack in SDAGBuilder in place to work around this but now we
can avoid that. Call BuildExactSDIV from BuildSDIV so DAGCombiner can
perform this trick automatically.
The added check in DAGCombiner is necessary to prevent exact sdiv by pow2
from regressing as the target-specific pow2 lowering is not aware of
exact bits yet.
This is mostly covered by existing tests. One side effect is that we
get the better lowering for exact vector sdivs now too :)
llvm-svn: 240891
This is an updated version of the patch that was checked in at:
http://reviews.llvm.org/rL237046
but subsequently reverted because it exposed a bug in the DAG Combiner:
http://reviews.llvm.org/D9893
This time, there's an enablement flag ("EnableFMFInDAG") around the code in
SelectionDAGBuilder where we copy the set of FP optimization flags from IR
instructions to DAG nodes. So, in theory, there should be no functional change
from this patch as-is, but it will allow testing with the added functionality
to proceed via "-enable-fmf-dag" passed to llc.
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
Differential Revision: http://reviews.llvm.org/D10403
llvm-svn: 239828
DAG.FoldConstantArithmetic() can fail even though both operands are
Constants if OpaqueConstants are involved. Continue trying other combine
possibilities in tis case.
Differential Revision: http://reviews.llvm.org/D6946
Somewhat related to PR21801 / rdar://19211454
llvm-svn: 237822
Summary:
During icmp lowering it can happen that a constant value can be larger than expected (see the code around the change).
APInt::getMinSignedBits() must be checked again as the shift before can change the constant sign to positive.
I'm not sure it is the best fix possible though.
Test Plan: Regression test included.
Reviewers: resistor, chandlerc, spatel, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, llvm-commits
Differential Revision: http://reviews.llvm.org/D9147
llvm-svn: 237812
This is a less ambitious version of:
http://reviews.llvm.org/rL236546
because that was reverted in:
http://reviews.llvm.org/rL236600
because it caused memory corruption that wasn't related to FMF
but was actually due to making nodes with 2 operands derive from a
plain SDNode rather than a BinarySDNode.
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
llvm-svn: 237046
This patch adds the minimum plumbing necessary to use IR-level
fast-math-flags (FMF) in the backend without actually using
them for anything yet. This is a follow-on to:
http://reviews.llvm.org/rL235997
...which split the existing nsw / nuw / exact flags and FMF
into their own struct.
There are 2 structural changes here:
1. The main diff is that we're preparing to extend the optimization
flags to affect more than just binary SDNodes. Eg, IR intrinsics
( https://llvm.org/bugs/show_bug.cgi?id=21290 ) or non-binop nodes
that don't even exist in IR such as FMA, FNEG, etc.
2. The other change is that we're actually copying the FP fast-math-flags
from the IR instructions to SDNodes.
Differential Revision: http://reviews.llvm.org/D8900
llvm-svn: 236546
[DebugInfo] Add debug locations to constant SD nodes
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235989
This adds debug location to constant nodes of Selection DAG and updates
all places that create constants to pass debug locations
(see PR13269).
Can't guarantee that all locations are correct, but in a lot of cases choice
is obvious, so most of them should be. At least all tests pass.
Tests for these changes do not cover everything, instead just check it for
SDNodes, ARM and AArch64 where it's easy to get incorrect locations on
constants.
This is not complete fix as FastISel contains workaround for wrong debug
locations, which drops locations from instructions on processing constants,
but there isn't currently a way to use debug locations from constants there
as llvm::Constant doesn't cache it (yet). Although this is a bit different
issue, not directly related to these changes.
Differential Revision: http://reviews.llvm.org/D9084
llvm-svn: 235977
Fixing sign extension in makeLibCall for MIPS64. In MIPS64 architecture all
32 bit arguments (int, unsigned int, float 32 (soft float)) must be sign
extended. This fixes test "MultiSource/Applications/oggenc/".
Patch by Strahinja Petrovic.
Differential Revision: http://reviews.llvm.org/D7791
llvm-svn: 232943
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
llvm-svn: 230699
1) We should not try to simplify if the sext has multiple uses
2) There is no need to simplify is the source value is already sign-extended.
Patch by Gil Rapaport <gil.rapaport@intel.com>
Differential Revision: http://reviews.llvm.org/D6949
llvm-svn: 229659
This patch was generated by a clang tidy checker that is being open sourced.
The documentation of that checker is the following:
/// The emptiness of a container should be checked using the empty method
/// instead of the size method. It is not guaranteed that size is a
/// constant-time function, and it is generally more efficient and also shows
/// clearer intent to use empty. Furthermore some containers may implement the
/// empty method but not implement the size method. Using empty whenever
/// possible makes it easier to switch to another container in the future.
Patch by Gábor Horváth!
llvm-svn: 226161
Extend the existing code which handles this for zext. This makes this
more useful for targets with ZeroOrNegativeOne BooleanContent and
obsoletes a custom combine SI uses for i1 setcc (sext(i1), 0, setne)
since the constant will now be shrunk to i1.
llvm-svn: 224691
Move the code to a helper function to allow calls from TypeLegalizer.
No functionality change intended
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
Reviewed-by: Owen Anderson <resistor@mac.com>
llvm-svn: 212772
Summary:
On MIPS32r6/MIPS64r6, floating point comparisons return 0 or -1 but integer
comparisons return 0 or 1.
Updated the various uses of getBooleanContents. Two simplifications had to be
disabled when float and int boolean contents differ:
- ScalarizeVecRes_VSELECT except when the kind of boolean contents is trivially
discoverable (i.e. when the condition of the VSELECT is a SETCC node).
- visitVSELECT (select C, 0, 1) -> (xor C, 1).
Come to think of it, this one could test for the common case of 'C'
being a SETCC too.
Preserved existing behaviour for all other targets and updated the affected
MIPS32r6/MIPS64r6 tests. This also fixes the pi benchmark where the 'low'
variable was counting in the wrong direction because it thought it could simply
add the result of the comparison.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D4389
llvm-svn: 212697
tracks which elements of the build vector are in fact undef.
This should make actually inpsecting them (likely in my next patch)
reasonably pretty. Also makes the output parameter optional as it is
clear now that *most* users are happy with undefs in their splats.
llvm-svn: 212581
around the handling of UNDEF lanes in boolean vector content analysis.
The code before my changes here also failed to check for non-constant
splats in a buildvector. I have no idea how to trigger this, I just
spotted by inspection when trying to understand the code. It seems
extremely unlikely to be worth the trouble to teach the only caller of
this code (DAG combining setcc patterns) how to cleverly handle undef
lanes, so I've just commented more thoroughly that we're giving up
there.
llvm-svn: 212515
nodes about whether they are splats. This is factored out and improved
from r212324 which got reverted as it was far too aggressive. The new
API should help more conservatively handle buildvectors that are
a mixture of splatted and undef values.
No functionality change at this point. The hope is to slowly
re-introduce the undef-tolerant optimization of splats, but each time
being forced to make a concious decision about how to handle the undefs
in a way that doesn't lead to contradicting assumptions about the
collapsed value.
Hal has pointed out in discussions that this may not end up being the
desired API and instead it may be more convenient to get a mask of the
undef elements or something similar. I'm starting simple and will expand
the API as I adapt actual callers and see exactly what they need.
llvm-svn: 212514
lanes in vector splats.
The core problem here is that undef lanes can't *unilaterally* be
considered to contribute to splats. Their handling needs to be more
cautious. There is also a reported failure of the nightly testers
(thanks Tobias!) that may well stem from the same core issue. I'm going
to fix this theoretical issue, factor the APIs a bit better, and then
verify that I don't see anything bad with Tobias's reduction from the
test suite before recommitting.
Original commit message for r212324:
[x86] Generalize BuildVectorSDNode::getConstantSplatValue to work for
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can
easily tweak the lowering if they want.
llvm-svn: 212475
any constant, constant FP, or undef splat and to tolerate any undef
lanes in a splat, then replace all uses of isSplatVector in X86's
lowering with it.
This fixes issues where undef lanes in an otherwise splat vector would
prevent the splat logic from firing. It is a touch more awkward to use
this interface, but it is much more accurate. Suggestions for better
interface structuring welcome.
With this fix, the code generated with the widening legalization
strategy for widen_cast-4.ll is *dramatically* improved as the special
lowering strategies for a v16i8 SRA kick in even though the high lanes
are undef.
We also get a slightly different choice for broadcasting an aligned
memory location, and use vpshufd instead of vbroadcastss. This looks
like a minor win for pipelining and domain crossing, but a minor loss
for the number of micro-ops. I suspect its a wash, but folks can easily
tweak the lowering if they want.
llvm-svn: 212324
The argument list vector is never used after it has been passed to the
CallLoweringInfo and moving it to the CallLoweringInfo is cleaner and
pretty much as cheap as keeping a pointer to it.
llvm-svn: 212135
This patch modifies SelectionDAGBuilder to construct SDNodes with associated
NoSignedWrap, NoUnsignedWrap and Exact flags coming from IR BinaryOperator
instructions.
Added a new SDNode type called 'BinaryWithFlagsSDNode' to allow accessing
nsw/nuw/exact flags during codegen.
Patch by Marcello Maggioni.
llvm-svn: 210467
This is mostly a mechanical change changing all the call sites to the newer
chained-function construction pattern. This removes the horrible 15-parameter
constructor for the CallLoweringInfo in favour of setting properties of the call
via chained functions. No functional change beyond the removal of the old
constructors are intended.
llvm-svn: 209082
When reducing the bitwidth of a comparison against a constant, the
original setcc's result type was used, which was incorrect.
No test since I don't think any other in tree targets change the
bitwidth of the setcc type depending on the bitwidth of the compared
type.
llvm-svn: 208236
Otherwise the legalizer would just scalarize everything. Support for
mulhi in the targets isn't that great yet so on most targets we get
exactly the same scalarized output. Add a test for x86 vector udiv.
I had to disable the mulhi nodes on ARM because there aren't any patterns
for it. As far as I know ARM has instructions for getting the high part of
a multiply so this should be fixed.
llvm-svn: 207315
This code has been moved to a new function in the TargetLowering
class called expandMUL(). The purpose of this is to be able
to share lowering code between the SelectionDAGLegalize and
DAGTypeLegalizer classes.
No functionality changed intended.
llvm-svn: 206036
If GT/UGT or LT/ULT were set to expand, a comparison
with a constant would replace it with the illegal
cond code.
There are several more places later in this function that
will have the same basic problem.
Theoretically R600 should hit this problem for a test,
but for some reason it doesn't.
llvm-svn: 204727
Calls with inalloca are lowered by skipping all stores for arguments
passed in memory and the initial stack adjustment to allocate argument
memory.
Now the frontend is responsible for the memory layout, and the backend
doesn't have to do any work. As a result these changes are pretty
minimal.
Reviewers: echristo
Differential Revision: http://llvm-reviews.chandlerc.com/D2637
llvm-svn: 200596
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.
We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.
llvm-svn: 200058
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.
llvm-svn: 200034
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.
First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.
If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.
When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.
This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)
Reviewed by Eric
llvm-svn: 200022
This is a horrible bit of code. We're calling a simplification routine *in the middle* of type legalization. We tell the
simplification routine that it's running after legalization, but some of the types it will encounter will be illegal! The
fix is only to invoke the simplification if the types in question were legal, so that none of its invariants will be violated.
llvm-svn: 199847
This moves the check up into the parent class so that all targets can use it
without having to copy (and keep in sync) the same error message.
llvm-svn: 198579
This is really an extension of the current (shl (shr ...)) -> shl optimization.
The main difference is that certain upper bits must also not be demanded.
The motivating examples are the first two in the testcase, which occur
in llvmpipe output.
llvm-svn: 192783
This is useful for targets like R600, which only support GT, GE, NE, and EQ
condition codes as it removes the need to handle unsupported condition
codes in target specific code.
There are no tests with this commit, but R600 has been updated to take
advantage of this new feature, so its existing selectcc tests are now
testing the swapped operands path.
llvm-svn: 191601
Occasionally DAGCombiner can spot that a SETCC operation is completely
redundant and reduce it to "all true" or "all false". If this happens to a
vector, the value produced has to take account of what a normal comparison
would have produced, which may be an all-1s bitmask.
The fix in SelectionDAG.cpp is tested, however, as far as I can see the code in
TargetLowering.cpp is possibly unreachable and almost certainly irrelevant when
triggered so there are no tests. However, I believe it's still clearly the
right change and may save someone else some hassle if it suddenly becomes
reachable. So I'm doing it anyway.
llvm-svn: 190147
LowerCallTo returns a pair with the return value of the call as the first
element and the chain associated with the return value as the second element. If
we lower a call that has a void return value, LowerCallTo returns an SDValue
with a NULL SDNode and the chain for the call. Thus makeLibCall by just
returning the first value makes it impossible for you to set up the chain so
that the call is not eliminated as dead code.
I also updated all references to makeLibCall to reflect the new return type.
llvm-svn: 188300
This fixes some of the cycles between libCodeGen and libSelectionDAG. It's still
a complete mess but as long as the edges consist of virtual call it doesn't
cause breakage. BasicTTI did static calls and thus broke some build
configurations.
llvm-svn: 172246
- recognize string "{memory}" in the MI generation
- mark as mayload/maystore when there's a memory clobber constraint.
PR14859.
Patch by Krzysztof Parzyszek
llvm-svn: 172228
fp128 is almost but not quite completely illegal as a type on AArch64. As a
result it needs to have a register class (for argument passing mainly), but all
operations need to be lowered to runtime calls. Currently there's no way for
targets to do this (without duplicating code), as the relevant functions are
hidden in SelectionDAG. This patch changes that.
llvm-svn: 171971
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
bitwidth op back to the original size. If we reduce ANDs then this can cause
an endless loop. This patch changes the ZEXT to ANY_EXTEND if the demanded bits
are equal or smaller than the size of the reduced operation.
llvm-svn: 170505
A register can be associated with several distinct register classes.
For example, on PPC, the floating point registers are each associated with
both F4RC (which holds f32) and F8RC (which holds f64). As a result, this code
would fail when provided with a floating point register and an f64 operand
because it would happen to find the register in the F4RC class first and
return that. From the F4RC class, SDAG would extract f32 as the register
type and then assert because of the invalid implied conversion between
the f64 value and the f32 register.
Instead, search all register classes. If a register class containing the
the requested register has the requested type, then return that register
class. Otherwise, as before, return the first register class found that
contains the requested register.
llvm-svn: 170436
understand target implementation of any_extend / extload, just generate
zero_extend in place of any_extend for liveouts when the target knows the
zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz).
rdar://12771555
llvm-svn: 169536
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
which is supposed to consistently raise SIGTRAP across all systems. In contrast,
__builtin_trap() behave differently on different systems. e.g. it raises SIGTRAP on ARM, and
SIGILL on X86. The purpose of __builtin_debugtrap() is to consistently provide "trap"
functionality, in the mean time preserve the compatibility with on gcc on __builtin_trap().
The X86 backend is already able to handle debugtrap(). This patch is to:
1) make front-end recognize "__builtin_debugtrap()" (emboddied in the one-line change to Clang).
2) In DAG legalization phase, by default, "debugtrap" will be replaced with "trap", which
make the __builtin_debugtrap() "available" to all existing ports without the hassle of
changing their code.
3) If trap-function is specified (via -trap-func=xyz to llc), both __builtin_debugtrap() and
__builtin_trap() will be expanded into the function call of the specified trap function.
This behavior may need change in the future.
The provided testing-case is to make sure 2) and 3) are working for ARM port, and we
already have a testing case for x86.
llvm-svn: 166300
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
llvm-svn: 165488
Provide interface in TargetLowering to set or get the minimum number of basic
blocks whereby jump tables are generated for switch statements rather than an
if sequence.
getMinimumJumpTableEntries() defaults to 4.
setMinimumJumpTableEntries() allows target configuration.
This patch changes the default for the Hexagon architecture to 5
as it improves performance on some benchmarks.
llvm-svn: 164628
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
llvm-svn: 163150
large immediates. Add dag combine logic to recover in case the large
immediates doesn't fit in cmp immediate operand field.
int foo(unsigned long l) {
return (l>> 47) == 1;
}
we produce
%shr.mask = and i64 %l, -140737488355328
%cmp = icmp eq i64 %shr.mask, 140737488355328
%conv = zext i1 %cmp to i32
ret i32 %conv
which codegens to
movq $0xffff800000000000,%rax
andq %rdi,%rax
movq $0x0000800000000000,%rcx
cmpq %rcx,%rax
sete %al
movzbl %al,%eax
ret
TargetLowering::SimplifySetCC would transform
(X & -256) == 256 -> (X >> 8) == 1
if the immediate fails the isLegalICmpImmediate() test. For x86,
that's immediates which are not a signed 32-bit immediate.
Based on a patch by Eli Friedman.
PR10328
rdar://9758774
llvm-svn: 160346
This will be used to determine whether it's profitable to turn a select into a
branch when the branch is likely to be predicted.
Currently enabled for everything but Atom on X86 and Cortex-A9 devices on ARM.
I'm not entirely happy with the name of this flag, suggestions welcome ;)
llvm-svn: 156233
We want the representative register class to contain the largest
super-registers available. This makes the function less sensitive to the
register class numbering.
llvm-svn: 156220
The masks returned by SuperRegClassIterator are computed automatically
by TableGen. This is better than depending on the manually specified
SuperRegClasses.
llvm-svn: 156147
transformation:
(X op C1) ^ C2 --> (X op C1) & ~C2 iff (C1&C2) == C2
should be done.
This change has been tested:
Using a debug+asserts build:
on the specific test case that brought this bug to light
make check-all
lnt nt
using this clang to build a release version of clang
Using the release+asserts clang-with-clang build:
on the specific test case that brought this bug to light
make check-all
lnt nt
Checking in because Evan wants it checked in. Test case forthcoming after
scrubbing.
llvm-svn: 154955
in TargetLowering. There was already a FIXME about this location being
odd. The interface is simplified as a consequence. This will also make
it easier to change TLS models when compiling with PIE.
llvm-svn: 154292
LSR always tries to make the ICmp in the loop latch use the incremented
induction variable. This allows the induction variable to be kept in a
single register.
When the induction variable limit is equal to the stride,
SimplifySetCC() would break LSR's hard work by transforming:
(icmp (add iv, stride), stride) --> (cmp iv, 0)
This forced us to use lea for the IC update, preventing the simpler
incl+cmp.
<rdar://problem/7643606>
<rdar://problem/11184260>
llvm-svn: 154119
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011
When folding X == X we need to check getBooleanContents() to determine if the
result is a vector of ones or a vector of negative ones.
I tried creating a test case, but the problem seems to only be exposed on a
much older version of clang (around r144500).
rdar://10923049
llvm-svn: 153966
We know that the blend instructions only use the MSB, so if the mask is
sign-extended then we can convert it into a SHL instruction. This is a
common pattern because the type-legalizer sign-extends the i1 type which
is used by the LLVM-IR for the condition.
Added a new optimization in SimplifyDemandedBits for SIGN_EXTEND_INREG -> SHL.
llvm-svn: 148225
of several newly un-defaulted switches. This also helps optimizers
(including LLVM's) recognize that every case is covered, and we should
assume as much.
llvm-svn: 147861
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
llvm-svn: 144100
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
llvm-svn: 139159
If we have a chain of zext -> assert_zext -> zext -> use, the first zext would get simplified away because of the later zext, and then the later zext would get simplified away because of the assert. The solution is to teach SimplifyDemandedBits that assert_zext demands all of the high bits of its input, rather than only those demanded by its users. No testcase because the only example I have manifests as llvm-gcc miscompiling LLVM, and I haven't found a smaller case that reproduces this problem.
Fixes <rdar://problem/10063365>.
llvm-svn: 139059
when determining validity of matching constraint. Allow i1
types access to the GR8 reg class for x86.
Fixes PR10352 and rdar://9777108
llvm-svn: 135180
We have to do this in DAGBuilder instead of DAGCombiner, because the exact bit is lost after building.
struct foo { char x[24]; };
long bar(struct foo *a, struct foo *b) { return a-b; }
is now compiled into
movl 4(%esp), %eax
subl 8(%esp), %eax
sarl $3, %eax
imull $-1431655765, %eax, %eax
instead of
movl 4(%esp), %eax
subl 8(%esp), %eax
movl $715827883, %ecx
imull %ecx
movl %edx, %eax
shrl $31, %eax
sarl $2, %edx
addl %eax, %edx
movl %edx, %eax
llvm-svn: 134695
(only happens when using the -promote-elements option).
The correct legalization order is to first try to promote element. Next, we try
to widen vectors.
llvm-svn: 132648
patch we add a flag to enable a new type legalization decision - to promote
integer elements in vectors. Currently, the rest of the codegen does not support
this kind of legalization. This flag will be removed when the transition is
complete.
llvm-svn: 132394
This patch does not change the behavior of the type legalizer. The codegen
produces the same code.
This infrastructural change is needed in order to enable complex decisions
for vector types (needed by the vector-select patch).
llvm-svn: 132263
On x86 this allows to fold a load into the cmp, greatly reducing register pressure.
movzbl (%rdi), %eax
cmpl $47, %eax
->
cmpb $47, (%rdi)
This shaves 8k off gcc.o on i386. I'll leave applying the patch in README.txt to Chris :)
llvm-svn: 130005
have their low bits set to zero. This allows us to optimize
out explicit stack alignment code like in stack-align.ll:test4 when
it is redundant.
Doing this causes the code generator to start turning FI+cst into
FI|cst all over the place, which is general goodness (that is the
canonical form) except that various pieces of the code generator
don't handle OR aggressively. Fix this by introducing a new
SelectionDAG::isBaseWithConstantOffset predicate, and using it
in places that are looking for ADD(X,CST). The ARM backend in
particular was missing a lot of addressing mode folding opportunities
around OR.
llvm-svn: 125470
This shaves off 4 popcounts from the hacked 186.crafty source.
This is enabled even when a native popcount instruction is available. The
combined code is one operation longer but it should be faster nevertheless.
llvm-svn: 123621
There's an inherent tension in DAGCombine between assuming
that things will be put in canonical form, and the Depth
mechanism that disables transformations when recursion gets
too deep. It would not surprise me if there's a lot of little
bugs like this one waiting to be discovered. The mechanism
seems fragile and I'd suggest looking at it from a design viewpoint.
llvm-svn: 123191
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
expanding: e.g. <2 x float> -> <4 x float> instead of -> 2 floats. This
affects two places in the code: handling cross block values and handling
function return and arguments. Since vectors are already widened by
legalizetypes, this gives us much better code and unblocks x86-64 abi
and SPU abi work.
For example, this (which is a silly example of a cross-block value):
define <4 x float> @test2(<4 x float> %A) nounwind {
%B = shufflevector <4 x float> %A, <4 x float> undef, <2 x i32> <i32 0, i32 1>
%C = fadd <2 x float> %B, %B
br label %BB
BB:
%D = fadd <2 x float> %C, %C
%E = shufflevector <2 x float> %D, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
ret <4 x float> %E
}
Now compiles into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
addps %xmm0, %xmm0
ret
previously it compiled into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
pshufd $1, %xmm0, %xmm1
## kill: XMM0<def> XMM0<kill> XMM0<def>
insertps $0, %xmm0, %xmm0
insertps $16, %xmm1, %xmm0
addps %xmm0, %xmm0
ret
This implements rdar://8230384
llvm-svn: 112101
correct alignment information, which simplifies ExpandRes_VAARG a bit.
The patch introduces a new alignment information to TargetLoweringInfo. This is
needed since the two natural candidates cannot be used:
* The 's' in target data: If this is set to the minimal alignment of any
argument, getCallFrameTypeAlignment would return 4 for doubles on ARM for
example.
* The getTransientStackAlignment method. It is possible for an architecture to
have argument less aligned than what we maintain the stack pointer.
llvm-svn: 108072
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
llvm-svn: 108039
U utils/TableGen/FastISelEmitter.cpp
--- Reverse-merging r107943 into '.':
U test/CodeGen/X86/fast-isel.ll
U test/CodeGen/X86/fast-isel-loads.ll
U include/llvm/Target/TargetLowering.h
U include/llvm/Support/PassNameParser.h
U include/llvm/CodeGen/FunctionLoweringInfo.h
U include/llvm/CodeGen/CallingConvLower.h
U include/llvm/CodeGen/FastISel.h
U include/llvm/CodeGen/SelectionDAGISel.h
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/CallingConvLower.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
U lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
U lib/CodeGen/SelectionDAG/FastISel.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
U lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
U lib/CodeGen/SelectionDAG/InstrEmitter.cpp
U lib/CodeGen/SelectionDAG/TargetLowering.cpp
U lib/Target/XCore/XCoreISelLowering.cpp
U lib/Target/XCore/XCoreISelLowering.h
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86ISelLowering.h
llvm-svn: 107987
have to be registers, per gcc documentation. This affects
the logic for determining what "g" should lower to. PR 7393.
A couple of existing testcases are affected.
llvm-svn: 107079
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
llvm-svn: 106893
atomic intrinsics, either because the use locking instructions for the
atomics, or because they perform the locking directly. Add support in the
DAG combiner to fold away the fences.
llvm-svn: 106630
entries used by llvm-gcc. *_[U]MIN and such can be added later if needed.
This enables the front ends to simplify handling of the atomic intrinsics by
removing the target-specific decision about which targets can handle the
intrinsics.
llvm-svn: 106321
user-defined operations that use MMX register types, but
the compiler shouldn't generate them on its own. This adds
a Synthesizable abstraction to represent this, and changes
the vector widening computation so it won't produce MMX types.
(The motivation is to remove noise from the ABI compatibility
part of the gcc test suite, which has some breakage right now.)
llvm-svn: 101951
dragonegg self-host build. I reverted 96640 in order to revert
96556 (96640 goes on top of 96556), but it also looks like with
both of them applied the breakage happens even earlier. The
symptom of the 96556 miscompile is the following crash:
llvm[3]: Compiling AlphaISelLowering.cpp for Release build
cc1plus: /home/duncan/tmp/tmp/llvm/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:4982: void llvm::SelectionDAG::ReplaceAllUsesWith(llvm::SDNode*, llvm::SDNode*, llvm::SelectionDAG::DAGUpdateListener*): Assertion `(!From->hasAnyUseOfValue(i) || From->getValueType(i) == To->getValueType(i)) && "Cannot use this version of ReplaceAllUsesWith!"' failed.
Stack dump:
0. Running pass 'X86 DAG->DAG Instruction Selection' on function '@_ZN4llvm19AlphaTargetLowering14LowerOperationENS_7SDValueERNS_12SelectionDAGE'
g++: Internal error: Aborted (program cc1plus)
This occurs when building LLVM using LLVM built by LLVM (via
dragonegg). Probably LLVM has miscompiled itself, though it
may have miscompiled GCC and/or dragonegg itself: at this point
of the self-host build, all of GCC, LLVM and dragonegg were built
using LLVM. Unfortunately this kind of thing is extremely hard
to debug, and while I did rummage around a bit I didn't find any
smoking guns, aka obviously miscompiled code.
Found by bisection.
r96556 | evancheng | 2010-02-18 03:13:50 +0100 (Thu, 18 Feb 2010) | 5 lines
Some dag combiner goodness:
Transform br (xor (x, y)) -> br (x != y)
Transform br (xor (xor (x,y), 1)) -> br (x == y)
Also normalize (and (X, 1) == / != 1 -> (and (X, 1)) != / == 0 to match to "test on x86" and "tst on arm"
r96640 | evancheng | 2010-02-19 01:34:39 +0100 (Fri, 19 Feb 2010) | 16 lines
Transform (xor (setcc), (setcc)) == / != 1 to
(xor (setcc), (setcc)) != / == 1.
e.g. On x86_64
%0 = icmp eq i32 %x, 0
%1 = icmp eq i32 %y, 0
%2 = xor i1 %1, %0
br i1 %2, label %bb, label %return
=>
testl %edi, %edi
sete %al
testl %esi, %esi
sete %cl
cmpb %al, %cl
je LBB1_2
llvm-svn: 96672
lowering and requires that certain types exist in ValueTypes.h. Modified widening to
check if an op can trap and if so, the widening algorithm will apply only the op on
the defined elements. It is safer to do this in widening because the optimizer can't
guarantee removing unused ops in some cases.
llvm-svn: 95823
which is more convenient, and change getPICJumpTableRelocBaseExpr
to take a MachineFunction to match.
Next, move the X86 code that create a PICBase symbol to
X86TargetLowering::getPICBaseSymbol from
X86MCInstLower::GetPICBaseSymbol, which was an asmprinter specific
library. This eliminates a 'gross hack', and allows us to
implement X86ISelLowering::getPICJumpTableRelocBaseExpr which now
calls it.
This in turn allows us to eliminate the
X86AsmPrinter::printPICJumpTableSetLabel method, which was the
only overload of printPICJumpTableSetLabel.
llvm-svn: 94526
1. MachineJumpTableInfo is now created lazily for a function the first time
it actually makes a jump table instead of for every function.
2. The encoding of jump table entries is now described by the
MachineJumpTableInfo::JTEntryKind enum. This enum is determined by the
TLI::getJumpTableEncoding() hook, instead of by lots of code scattered
throughout the compiler that "knows" that jump table entries are always
32-bits in pic mode (for example).
3. The size and alignment of jump table entries is now calculated based on
their kind, instead of at machinefunction creation time.
Future work includes using the EntryKind in more places in the compiler,
eliminating other logic that "knows" the layout of jump tables in various
situations.
llvm-svn: 94470
really does need to be a vector type, because
TargetLowering::getOperationAction for SIGN_EXTEND_INREG uses that type,
and it needs to be able to distinguish between vectors and scalars.
Also, fix some more issues with legalization of vector casts.
llvm-svn: 93043
(OP (trunc x), (trunc y)) -> (trunc (OP x, y))
Unfortunately this simple change causes dag combine to infinite looping. The problem is the shrink demanded ops optimization tend to canonicalize expressions in the opposite manner. That is badness. This patch disable those optimizations in dag combine but instead it is done as a late pass in sdisel.
This also exposes some deficiencies in dag combine and x86 setcc / brcond lowering. Teach them to look pass ISD::TRUNCATE in various places.
llvm-svn: 92849
Note that "hasDotLocAndDotFile"-style debug info was already broken;
people wanting this functionality should implement it in the
AsmPrinter/DwarfWriter code.
llvm-svn: 89711