The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
llvm-svn: 233509
Author: Lang Hames <lhames@gmail.com>
Date: Mon Mar 9 23:51:09 2015 +0000
[Orc][MCJIT][RuntimeDyld] Add header that was accidentally left out of r231724.
Author: Lang Hames <lhames@gmail.com>
Date: Mon Mar 9 23:44:13 2015 +0000
[Orc][MCJIT][RuntimeDyld] Add symbol flags to symbols in RuntimeDyld. Thread the
new types through MCJIT and Orc.
In particular, add a 'weak' flag. When plumbed through RTDyldMemoryManager, this
will allow us to distinguish between weak and strong definitions and find the
right ones during symbol resolution.
llvm-svn: 231731
new types through MCJIT and Orc.
In particular, add a 'weak' flag. When plumbed through RTDyldMemoryManager, this
will allow us to distinguish between weak and strong definitions and find the
right ones during symbol resolution.
llvm-svn: 231724
Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.
This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.
The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".
llvm-svn: 229094
Summary:
Basically all other methods that look up functions by name skip them if they are mere declarations.
Do the same in FindFunctionNamed.
Reviewers: lhames
Reviewed By: lhames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7068
llvm-svn: 227227
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
This patch adds a new set of JIT APIs to LLVM. The aim of these new APIs is to
cleanly support a wider range of JIT use cases in LLVM, and encourage the
development and contribution of re-usable infrastructure for LLVM JIT use-cases.
These APIs are intended to live alongside the MCJIT APIs, and should not affect
existing clients.
Included in this patch:
1) New headers in include/llvm/ExecutionEngine/Orc that provide a set of
components for building JIT infrastructure.
Implementation code for these headers lives in lib/ExecutionEngine/Orc.
2) A prototype re-implementation of MCJIT (OrcMCJITReplacement) built out of the
new components.
3) Minor changes to RTDyldMemoryManager needed to support the new components.
These changes should not impact existing clients.
4) A new flag for lli, -use-orcmcjit, which will cause lli to use the
OrcMCJITReplacement class as its underlying execution engine, rather than
MCJIT itself.
Tests to follow shortly.
Special thanks to Michael Ilseman, Pete Cooper, David Blaikie, Eric Christopher,
Justin Bogner, and Jim Grosbach for extensive feedback and discussion.
llvm-svn: 226940
that we actually have an object to register first.
For MachO objects, RuntimeDyld::LoadedObjectInfo::getObjectForDebug returns an
empty OwningBinary<ObjectFile> which was causing crashes in the GDB registration
code.
llvm-svn: 222812
The RuntimeDyld cleanup patch r222810 turned on GDB registration for MachO
objects. I expected this to be harmless, but it seems to have broken on
MacsOS. Temporarily disabling debugger registration while I dig in to what's
gone wrong.
llvm-svn: 222811
Previously, when loading an object file, RuntimeDyld (1) took ownership of the
ObjectFile instance (and associated MemoryBuffer), (2) potentially modified the
object in-place, and (3) returned an ObjectImage that managed ownership of the
now-modified object and provided some convenience methods. This scheme accreted
over several years as features were tacked on to RuntimeDyld, and was both
unintuitive and unsafe (See e.g. http://llvm.org/PR20722).
This patch fixes the issue by removing all ownership and in-place modification
of object files from RuntimeDyld. Existing behavior, including debugger
registration, is preserved.
Noteworthy changes include:
(1) ObjectFile instances are now passed to RuntimeDyld by const-ref.
(2) The ObjectImage and ObjectBuffer classes have been removed entirely, they
existed to model ownership within RuntimeDyld, and so are no longer needed.
(3) RuntimeDyld::loadObject now returns an instance of a new class,
RuntimeDyld::LoadedObjectInfo, which can be used to construct a modified
object suitable for registration with the debugger, following the existing
debugger registration scheme.
(4) The JITRegistrar class has been removed, and the GDBRegistrar class has been
re-written as a JITEventListener.
This should fix http://llvm.org/PR20722 .
llvm-svn: 222810
The getBinary and getBuffer method now return ordinary pointers of appropriate
const-ness. Ownership is transferred by calling takeBinary(), which returns a
pair of the Binary and a MemoryBuffer.
llvm-svn: 221003
MCJIT::getPointerForFunction adds the resulting address to the global mapping.
This should be done via updateGlobalMapping rather than addGlobalMapping, since
the latter asserts if a mapping already exists.
MCJIT::getPointerToFunction is actually deprecated - hopefully we can remove it
(or more likely re-task it) entirely soon. In the mean time it should at least
work as advertised.
<rdar://problem/18727946>
llvm-svn: 220444
This patch removes the old JIT memory manager (which does not provide any
useful functionality now that the old JIT is gone), and migrates the few
remaining clients over to SectionMemoryManager.
http://llvm.org/PR20848
llvm-svn: 218316
This patch modifies RTDyldMemoryManager::getSymbolAddress(Name)'s behavior to
make it consistent with how clients are using it: Name should be mangled, and
getSymbolAddress should demangle it on the caller's behalf before looking the
name up in the process. This patch also fixes the one client
(MCJIT::getPointerToFunction) that had been passing unmangled names (by having
it pass mangled names instead).
Background:
RTDyldMemoryManager::getSymbolAddress(Name) has always used a re-try mechanism
when looking up symbol names in the current process. Prior to this patch
getSymbolAddress first tried to look up 'Name' exactly as the user passed it in
and then, if that failed, tried to demangle 'Name' and re-try the look up. The
implication of this behavior is that getSymbolAddress expected to be called with
unmangled names, and that handling mangled names was a fallback for convenience.
This is inconsistent with how clients (particularly the RuntimeDyldImpl
subclasses, but also MCJIT) usually use this API. Most clients pass in mangled
names, and succeed only because of the fallback case. For clients passing in
mangled names, getSymbolAddress's old behavior was actually dangerous, as it
could cause unmangled names in the process to shadow mangled names being looked
up.
For example, consider:
foo.c:
int _x = 7;
int x() { return _x; }
foo.o:
000000000000000c D __x
0000000000000000 T _x
If foo.c becomes part of the process (E.g. via dlopen("libfoo.dylib")) it will
add symbols 'x' (the function) and '_x' (the variable) to the process. However
jit clients looking for the function 'x' will be using the mangled function name
'_x' (note how function 'x' appears in foo.o). When getSymbolAddress goes
looking for '_x' it will find the variable instead, and return its address and
in place of the function, leading to JIT'd code calling the variable and
crashing (if we're lucky).
By requiring that getSymbolAddress be called with mangled names, and demangling
only when we're about to do a lookup in the process, the new behavior
implemented in this patch should eliminate any chance of names being shadowed
during lookup.
There's no good way to test this at the moment: This issue only arrises when
looking up process symbols (not JIT'd symbols). Any test case would have to
generate a platform-appropriate dylib to pass to llvm-rtdyld, and I'm not
aware of any in-tree tool for doing this in a portable way.
llvm-svn: 218187
More methods to follow.
Using StringRef allows us the EE interface to work with more string types
without forcing construction of std::strings.
llvm-svn: 217794
With this a DataLayoutPass can be reused for multiple modules.
Once we have doInitialization/doFinalization, it doesn't seem necessary to pass
a Module to the constructor.
Overall this change seems in line with the idea of making DataLayout a required
part of Module. With it the only way of having a DataLayout used is to add it
to the Module.
llvm-svn: 217548
The finalizeObject method calls generateCodeForModule on each of the currently
'added' objects, but generateCodeForModule moves objects out of the 'added'
set as it's called. To avoid iterator invalidation issues, the added set is
copied out before any calls to generateCodeForModule.
This should fix http://llvm.org/PR20851 .
llvm-svn: 217291
Owning the buffer is somewhat inflexible. Some Binaries have sub Binaries
(like Archive) and we had to create dummy buffers just to handle that. It is
also a bad fit for IRObjectFile where the Module wants to own the buffer too.
Keeping this ownership would make supporting IR inside native objects
particularly painful.
This patch focuses in lib/Object. If something elsewhere used to own an Binary,
now it also owns a MemoryBuffer.
This patch introduces a few new types.
* MemoryBufferRef. This is just a pair of StringRefs for the data and name.
This is to MemoryBuffer as StringRef is to std::string.
* OwningBinary. A combination of Binary and a MemoryBuffer. This is needed
for convenience functions that take a filename and return both the
buffer and the Binary using that buffer.
The C api now uses OwningBinary to avoid any change in semantics. I will start
a new thread to see if we want to change it and how.
llvm-svn: 216002
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
This reverts commit 1f502bd9d7d2c1f98ad93a09ffe435e11a95aedd, due to
GCC / MinGW's lack of support for C++11 threading.
It's possible this will go back in after we come up with a
reasonable solution.
llvm-svn: 211401
This change has a bit of a trickle down effect due to the fact that
there are a number of derived implementations of ExecutionEngine,
and that the mutex is not tightly encapsulated so is used by other
classes directly.
Reviewed by: rnk
Differential Revision: http://reviews.llvm.org/D4196
llvm-svn: 211214
This starts in MCJIT::getSymbolAddress where the
unique_ptr<object::Binary> is release()d and (after a cast) passed to a
single caller, MCJIT::addObjectFile.
addObjectFile calls RuntimeDyld::loadObject.
RuntimeDld::loadObject calls RuntimeDyldELF::createObjectFromFile
And the pointer is never owned at this point. I say this point, because
the alternative codepath, RuntimeDyldMachO::createObjectFile certainly
does take ownership, so this seemed like a good hint that this was a/the
right place to take ownership.
llvm-svn: 207580
Previously module verification was always enabled, with no way to turn it off.
As of this commit, module verification is on by default in Debug builds, and off
by default in release builds. The default behaviour can be overridden by calling
setVerifyModules(bool) on the JIT instance (this works for both the old JIT, and
MCJIT).
<rdar://problem/16150008>
llvm-svn: 206561
RTDyldMemoryManager, regardless of whether it thinks they're "required for
execution".
Currently, RuntimeDyld only passes sections that are "required for execution"
to the RTDyldMemoryManager, and takes "required for execution" to mean exactly
"contains symbols or relocations". There are two problems with this:
(1) It can drop sections with anonymous data that is referenced by code.
(2) It leaves the JIT client no way to inspect interesting sections that aren't
actually required to run the program (e.g dwarf sections).
A test case is still in the works.
Future work: We may want to replace this with a generic section filtering
mechanism, but that will require more consideration. For now, this flag at least
allows clients to volunteer to do the filtering themselves.
Fixes <rdar://problem/15177691>.
llvm-svn: 204398
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
Eventually DataLayoutPass should go away, but for now that is the only easy
way to get a DataLayout in some APIs. This patch only changes the ones that
have easy access to a Module.
One interesting issue with sometimes using DataLayoutPass and sometimes
fetching it from the Module is that we have to make sure they are equivalent.
We can get most of the way there by always constructing the pass with a Module.
In fact, the pass could be changed to point to an external DataLayout instead
of owning one to make this stricter.
Unfortunately, the C api passes a DataLayout, so it has to be up to the caller
to make sure the pass and the module are in sync.
llvm-svn: 202204
TargetLoweringBase is implemented in CodeGen, so before this patch we had
a dependency fom Target to CodeGen. This would show up as a link failure of
llvm-stress when building with -DBUILD_SHARED_LIBS=ON.
This fixes pr18900.
llvm-svn: 201711
r201608 made llvm corretly handle private globals with MachO. r201622 fixed
a bug in it and r201624 and r201625 were changes for using private linkage,
assuming that llvm would do the right thing.
They all got reverted because r201608 introduced a crash in LTO. This patch
includes a fix for that. The issue was that TargetLoweringObjectFile now has
to be initialized before we can mangle names of private globals. This is
trivially true during the normal codegen pipeline (the asm printer does it),
but LTO has to do it manually.
llvm-svn: 201700
The IR
@foo = private constant i32 42
is valid, but before this patch we would produce an invalid MachO from it. It
was invalid because it would use an L label in a section where the liker needs
the labels in order to atomize it.
One way of fixing it would be to just reject this IR in the backend, but that
would not be very front end friendly.
What this patch does is use an 'l' prefix in sections that we know the linker
requires symbols for atomizing them. This allows frontends to just use
private and not worry about which sections they go to or how the linker handles
them.
One small issue with this strategy is that now a symbol name depends on the
section, which is not available before codegen. This is not a problem in
practice. The reason is that it only happens with private linkage, which will
be ignored by the non codegen users (llvm-nm and llvm-ar).
llvm-svn: 201608
required for all sections in a module. This can be useful when targets or
code-models place strict requirements on how sections must be laid out
in memory.
If RTDyldMemoryManger::needsToReserveAllocationSpace() is overridden to return
true then the JIT will call the following method on the memory manager, which
can be used to preallocate the necessary memory.
void RTDyldMemoryManager::reserveAllocationSpace(uintptr_t CodeSize,
uintptr_t DataSizeRO,
uintptr_t DataSizeRW)
Patch by Vaidas Gasiunas. Thanks very much Viadas!
llvm-svn: 201259
This patch adds the target analysis passes (usually TargetTransformInfo) to the
codgen pipeline. We also expose now the AddAnalysisPasses method through the C
API, because the optimizer passes would also benefit from better target-specific
cost models.
Reviewed by Andrew Kaylor
llvm-svn: 199926
I believe the bot failures on linux systems were due to overestimating the
alignment of object-files within archives, which are only guaranteed to be
two-byte aligned. I have reduced the alignment in
RuntimeDyldELF::createObjectImageFromFile accordingly.
llvm-svn: 198737
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
llvm-svn: 198685
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
llvm-svn: 198438
getSymbolWithGlobalValueBase use is to create a name of a new symbol based
on the name of an existing GV. Assert that and then remove the last call
to pass true to isImplicitlyPrivate.
This gives the mangler API a 1:1 mapping from GV to names, which is what we
need to drop the mangler dependency on the target (and use an extended
datalayout instead).
llvm-svn: 196472
Without this, customers of the MCJIT were leaking memory like crazy.
It's not really clear what the *right* memory management is here, so I'm
not trying to add lots of tests or other logic, just trying to get us
back to a better baseline. I'll follow up on the original commit to
figure out the right path forward.
llvm-svn: 193323
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
llvm-svn: 191804
Tests to follow.
PIC with small code model and EH frame handling will not work with multiple modules. There are also some rough edges to be smoothed out for remote target support.
llvm-svn: 191722
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407 and r182411. That first revision
broke builds because I forgot to move the conditional includes of
various POSIX headers from SectionMemoryManager into
RTDyldMemoryManager. Those includes are necessary because of how
getPointerToNamedFunction works around the glibc libc_nonshared.a thing.
The latter revision still broke things because I forgot to include
llvm/Config/config.h.
llvm-svn: 182418
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
This is a fixed version of r182407. That revision broke builds because I
forgot to move the conditional includes of various POSIX headers from
SectionMemoryManager into RTDyldMemoryManager. Those includes are
necessary because of how getPointerToNamedFunction works around the
glibc libc_nonshared.a thing.
llvm-svn: 182411
libExecutionEngine. Move method implementations that aren't specific to
allocation out of SectionMemoryManager and into RTDyldMemoryManager.
This is in preparation for exposing RTDyldMemoryManager through the C
API.
llvm-svn: 182407