Two tests were failing because the debugger was picking up multiply
defined internal symbols from the system libraries. This is a bug, as
there should be no ambiguity because the tests are defining variables
with should shadow these symbols, but lldb is not smart enough to figure
that out.
I work around the issue by renaming the variables in these tests, and in
exchange I create a self-contained test which reproduces the issue
without depending on the system libraries.
This increases the predictability of our test suite.
llvm-svn: 321271
I tested on x86-64 and Jason on embedded architectures.
This cleans up another couple of reported unexpected successes.
<rdar://problem/28623427>
llvm-svn: 320452
After discussing this with Jim and Jason, I think my commit was
actually sweeping the issue under the carpet rather than fixing it.
I'll take a closer look between tonight and tomorrow.
llvm-svn: 320447
Some tests are failing on macOS when building with the in-tree
clang, and this is because they're conditional on the version released.
Apple releases using a different versioning number, but as these are
conditional on clang < 7, they fail for clang ToT (which is 6.0).
As a general solution, we actually need either a mapping between
Apple internal release version and public ones.
That said, I discussed this with Fred , and Apple Clang 6.0 seems
to be old enough that we can remove this altogether (which means I
can delay implementing the general purpose solution for a bit).
Differential Revision: https://reviews.llvm.org/D41101
llvm-svn: 320444
Summary:
This flag is on by default for darwin and freebsd, but off for linux.
Without it, clang will sometimes not emit debug info for types like
std::string. Whether it does this, and which tests will fail because of
that depends on the linux distro and c++ library version.
A bunch of tests were already setting these flags manually, but here
instead I take a whole sale approach and enable this flag for all tests.
Any test which does not want to have this flag (right now we have one
such test) can turn it off explicitly via
CFLAGS_EXTRAS+=$(LIMIT_DEBUG_INFO_FLAGS)
This fixes a bunch of data formatter tests on red-hat.
Reviewers: davide, jankratochvil
Subscribers: emaste, aprantl, krytarowski, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D40717
llvm-svn: 319653
Summary: These fail because `-fPIC` is not supported on Windows.
Reviewers: zturner, jingham, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D39692
llvm-svn: 317529
Summary:
This mechanism was mostly redundant with the file-based .categories
mechanism, and it was interfering with it, as any test which implemented
a getCategories method would not inherit the filesystem categories.
This patch removes it. The existing categories are preserved either by
adding a .categories file, or using the @add_test_categories decorator.
Reviewers: jingham, clayborg, zturner
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D39515
llvm-svn: 317277
running watchos. These tests cannot run on normal customer devices,
but I hope to some day have a public facing bot running against a
device.
llvm-svn: 314355
Normal customer devices won't be able to run these tests, we're hoping to get
a public facing bot set up at some point. Both devices pass the testsuite without
any errors or failures.
I have seen some instability with the armv7 test runs, I may submit additional patches
to address this. arm64 looks good.
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 314132
Normal customer devices won't be able to run these devices, we're hoping to get
a public facing bot set up at some point. Both devices pass the testsuite without
any errors or failures.
I have seen some instability with the armv7 test runs, I may submit additional patches
to address this. arm64 looks good.
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 314038
Normal customer devices won't be able to run these devices, we're hoping to get
a public facing bot set up at some point.
There will be some smaller follow-on patches. The changes to tools/lldb-server are
verbose and I'm not thrilled with having to skip all of these tests manually.
There are a few places where I'm making the assumption that "armv7", "armv7k", "arm64"
means it's an ios device, and I need to review & clean these up with an OS check
as well. (Android will show up as "arm" and "aarch64" so by pure luck they shouldn't
cause problems, but it's not an assumption I want to rely on).
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 313932
The Linux xfail decorator was removed in r272326 with the claim that the
test "runs reliably on the linux x86 buildbot." It also runs reliably on
FreeBSD for me.
llvm.org/pr25925
llvm-svn: 310644
This reapplies https://reviews.llvm.org/D35740 with a tweak to find
the section by name rather than type. Section types don't distinguish
between regular sections and their DWO counterparts.
llvm-svn: 308905
The DWO handling code can get confused by clang modules which also use
skeleton CUs to point to the object file with the full debug
info. This patch detects whether an object is a "real" DWO or a clang
module and prevents LLDB from interpreting clang modules as DWO. This
fixes the regression in TestWithModuleDebugging.
http://llvm.org/bugs/show_bug.cgi?id=33875
Differential Revision: https://reviews.llvm.org/D35740
llvm-svn: 308850
NSString is loaded from the DWARF, which doesn't have the concept of protocols.
When this is used with the NSMutableDictionary type from Objective-C modules,
this produces errors of the form
error: cannot initialize a parameter of type 'id<NSCopying> _Nonnull' with an rvalue of type 'NSString *'
We're aware of these problems and have an internal bug report filed
(<rdar://problem/32777981>)
llvm-svn: 305424
Clang does not accept regparm attribute on these platforms.
Fortunately, the default calling convention passes arguments
in registers any way
Subscribers: jaydeep, bhushan, lldb-commits, slthakur
llvm-svn: 305378
When parsing types originating in modules, it is possible to encounter AttributedTypes
(such as the type generated for NSString *_Nonnull). Some of LLDB's ClangASTContext
methods deal with them; others do not. In particular, one function that did not was
GetTypeInfo, causing TestObjCNewSyntax to fail.
This fixes that, treating AttributedType as essentially transparent and getting the
information for the modified type.
In addition, however, TestObjCNewSyntax is a monolithic test that verifies a bunch of
different things, all of which can break independently of one another. I broke it
apart into smaller tests so that we get more precise failures when something (like
this) breaks.
Differential Revision: https://reviews.llvm.org/D33812
llvm-svn: 304510
This works on SVN but is a bit fragile on the Swift branch.
I'm adding the test to both, so we have this path covered.
<rdar://problem/32372372>
llvm-svn: 304314
For remote targets we need to call registerSharedLibrariesWithTarget to
make sure they are installed alongside main executable. This also
required a small fixup in the the mentioned function as in this case
"One" was both a directory name and a library name template. I fixed it
to make sure it checks that the string refers to a file before it
assumed it was a full library path.
llvm-svn: 303248
When it resolves symbol-only variables, the expression parser
currently looks only in the global module list. It should prefer
the current module.
I've fixed that behavior by making it search the current module
first, and only search globally if it finds nothing. I've also
added a test case.
After review, I moved the core of the lookup algorithm into
SymbolContext for use by other code that needs it.
Thanks to Greg Clayton and Pavel Labath for their help.
Differential Revision: https://reviews.llvm.org/D33083
llvm-svn: 303223
ptr_refs exposed a problem in ClangASTContext's implementation: it
uses an accessor to downcast a QualType to an
ObjCObjectPointerType, but the accessor is not fully general.
getAs() is the safer way to go.
I've added a test case that uses ptr_refs in a way that would
crash before the fix.
<rdar://problem/31363513>
llvm-svn: 303110
Templates can end in parameter packs, like this
template <class T...> struct MyStruct
{ /*...*/ };
LLDB does not currently support these parameter packs;
it does not emit them into the template argument list
at all. This causes problems when you specialize, e.g.:
template <> struct MyStruct<int>
{ /*...*/ };
template <> struct MyStruct<int, int> : MyStruct<int>
{ /*...*/ };
LLDB generates two template specializations, each with
no template arguments, and then when they are imported
by the ASTImporter into a parser's AST context we get a
single specialization that inherits from itself,
causing Clang's record layout mechanism to smash its
stack.
This patch fixes the problem for classes and adds
tests. The tests for functions fail because Clang's
ASTImporter can't import them at the moment, so I've
xfailed that test.
Differential Revision: https://reviews.llvm.org/D33025
llvm-svn: 302833
gnuwin32 rm does not like wildcards that match nothing even if we
specify -f (probably because the wildcard expansion happens in-process
there). We could use make $(wildcard) here, but it seems safer to
explicitly list the files here, just like the normal Makefile.rules
does.
llvm-svn: 302013
Loading a shared library can require a large amount of work; rather than do that serially for each library,
this patch will allow parallelization of the symbols and debug info name indexes.
From scott.smith@purestorage.comhttps://reviews.llvm.org/D32598
llvm-svn: 301609
Many times a user wants to access a type when there's a variable of
the same name, or a variable when there's a type of the same name.
Depending on the precise context, currently the expression parser
can fail to resolve one or the other.
This is because ClangExpressionDeclMap has logic to limit the
amount of information it searches, and that logic sometimes cuts
down the search prematurely. This patch removes some of those early
exits.
In that sense, this patch trades performance (early exit is faster)
for correctness.
I've also included two new test cases showing examples of this
behavior – as well as modifying an existing test case that gets it
wrong.
llvm-svn: 301273
LLDB uses clang::DeclContexts for lookups, and variables get put into
the DeclContext for their abstract origin. (The abstract origin is a
DWARF pointer that indicates the unique definition of inlined code.)
When the expression parser is looking for variables, it locates the
DeclContext for the current context. This needs to be done carefully,
though, e.g.:
__attribute__ ((always_inline)) void f(int a) {
{
int b = a * 2;
}
}
void g() {
f(3);
}
Here, if we're stopped in the inlined copy of f, we have to find the
DeclContext corresponding to the definition of f – its abstract
origin. Clang doesn't allow multiple functions with the same name and
arguments to exist. It also means that any variables we see must be
placed in the appropriate DeclContext.
[Bug 1]: When stopped in an inline block, the function
GetDeclContextDIEContainingDIE for that block doesn't properly
construct a DeclContext for the abstract origin for inlined
subroutines. That means we get duplicated function DeclContexts, but
function arguments only get put in the abstract origin's DeclContext,
and as a result when we try to look for them in nested contexts they
aren't found.
[Bug 2]: When stopped in an inline block, the DWARF (for space
reasons) doesn't explicitly point to the abstract origin for that
block. This means that the function GetClangDeclContextForDIE returns
a different DeclContext for each place the block is inlined. However,
any variables defined in the block have abstract origins, so they
will only get placed in the DeclContext for their abstract origin.
In this fix, I've introduced a test covering both of these issues,
and fixed them.
Bug 1 could be resolved simply by making sure we look up the abstract
origin for inlined functions when looking up their DeclContexts on
behalf of nested blocks.
For Bug 2, I've implemented an algorithm that makes the DeclContext
for a block be the containing DeclContext for the closest entity we
would find during lookup that has an abstract origin pointer. That
means that in the following situation:
{ // block 1
int a;
{ // block 2
int b;
}
}
if we looked up the DeclContext for block 2, we'd find the block
containing the abstract origin of b, and lookup would proceed
correctly because we'd see b and a. However, in the situation
{ // block 1
int a;
{ // block 2
}
}
since there isn't anything to look up in block 2, we can't determine
its abstract origin (and there is no such pointer in the DWARF for
blocks). However, we can walk up the parent chain and find a, and its
abstract origin lives in the abstract origin of block 1. So we simply
say that the DeclContext for block 2 is the same as the DeclContext
for block 1, which contains a. Lookups will return the same results.
Thanks to Jim Ingham for review and suggestions.
Differential revision: https://reviews.llvm.org/D32375
llvm-svn: 301263
The test fails because an older clang did not emit the required debug
info (I am not sure when this got added, but clang-3.7 certainly did not
work yet). The actual platform has nothing to do with this.
llvm-svn: 300834
Clang rejects __attribute__((regparm)) when targetting arm. The default
calling convention passes arguments in registers anyway, so we can just
remove them in this case.
llvm-svn: 300670
This fixes a bug introduced by r291559. The Module's FindType was
passing the original name not the basename in the case where it didn't
find any separators. I also added a testcase for this.
<rdar://problem/31159173>
llvm-svn: 298331
We are going to turn off buffer overflow introduced by gcc by turning off
FORTIFY_SOURCE.
Differential revision: https://reviews.llvm.org/D28666
llvm-svn: 291949
We don't parse ObjC v1 types from the runtime metadata like we do for ObjC v2, but doing so by creating empty types was ruining the i386 v1 debugging experience.
<rdar://problem/24093343>
llvm-svn: 289233
We have a longstanding issue where the expression parser does not handle wide CFStrings (e.g., @"凸凹") correctly, producing the useless error message
Internal error [IRForTarget]: An Objective-C constant string's string initializer is not an array
error: warning: expression result unused
error: The expression could not be prepared to run in the target
This is just a side effect of the fact that we don't handle wide string constants when converting these to CFStringCreateWithBytes. That function takes the string's encoding as an argument, so I made it work and added a testcase.
https://reviews.llvm.org/D27291
<rdar://problem/13190557>
llvm-svn: 288386
Fails with all versions of arm/aarch64 gcc available on ubuntu 16.04/14.04.
Passes with Linaro GCC version >= 4.8 but fails with >= 5.0. But There are other regressions when we use Linaro GCC.
llvm-svn: 286574
The debug info emitted by clang for static variables improved by
rL286302 and it exposed an incorrect test expactation because now LLDB
able to displays more data 9thanks to better debug info) then before.
llvm-svn: 286360
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Reports an error instead. We can fix this later to make persistent variables
work, but right now we hit an LLVM assertion if we get this wrong.
<rdar://problem/27770298>
llvm-svn: 279850
Clang on ARM64 was making the three Function methods with identical bodies have
one implementation that was shared. That threw off the count of breakpoints, since
we don't count as separate locations three functions with the same address.
I also cleaned up the test case while I was at it.
<rdar://problem/27001915>
llvm-svn: 279800
Summary:
referencing a user-defined operator new was triggering an assert in clang because we were
registering the function name as string "operator new", instead of using the special operator
enum, which clang has for this purpose. Method operators already had code to handle this, and now
I extend this to cover free standing operator functions as well. Test included.
Reviewers: spyffe
Subscribers: sivachandra, paulherman, lldb-commits
Differential Revision: http://reviews.llvm.org/D17856
llvm-svn: 278670
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
Summary:
One of the tests there does not work with gcc, so I'm spinning that off into a separate test, so
that we can XFAIL it with more granularity.
I am also renaming the test to reflect the fact that it no longer tests only integer arguments.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D21923
llvm-svn: 274505
@unittest2.expectedFailure("rdar://7796742")
Which was covering up the fact this was failing on linux and hexagon. I added back a decorator so we don't break any build bots.
llvm-svn: 274388
We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like:
DW_OP_const8u (x)
DW_OP_form_tls_address
or
DW_OP_const8u (x)
DW_OP_GNU_push_tls_address
The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed.
This fix passes the "x" along to the thread:
virtual lldb::addr_t
lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr);
Then this is passed along to the DynamicLoader::GetThreadLocalData():
virtual lldb::addr_t
lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr);
This allows each DynamicLoader plug-in do the right thing for the current OS.
The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes.
I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread.
I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable.
<rdar://problem/23308080>
llvm-svn: 274366
We were checking for integer types only before this. So I added the ability for CompilerType objects to check for integer and enum types.
Then I searched for places that were using the CompilerType::IsIntegerType(...) function. Many of these places also wanted to be checking for enumeration types as well, so I have fixed those places. These are in the ABI plug-ins where we are figuring out which arguments would go in where in regisers/stack when making a function call, or determining where the return value would live. The real fix for this is to use clang to compiler a CGFunctionInfo and then modify the code to be able to take the IR and a calling convention and have the backend answer the questions correctly for us so we don't need to create a really bad copy of the ABI in each plug-in, but that is beyond the scope of this bug fix.
Also added a test case to ensure this doesn't regress in the future.
llvm-svn: 273750
Prior to this we would display the typename for "TestObj<-1>" as "TestObj<4294967295>" when we showed the type. Expression parsing could also fail because we would fail to find the mangled name when evaluating expressions.
The issue was we were losing the signed'ness of the template integer parameter in DWARFASTParserClang.cpp.
<rdar://problem/25577041>
llvm-svn: 272434
This enables a couple of tests which have been shown to run reliably on the
linux x86 buildbot. If you see a failure after this commit, feel free to add
the xfail back, but please make it as specific as possible (i.e., try to make
it not cover i386/x86_64 with clang-3.5, clang-3.9 or gcc-4.9).
llvm-svn: 272326
If a lldbinline test's source file changed language, then the Makefile wasn't
updated. This was a problem if the Makefile was checked into the repository.
Now lldbinline.py always regenerates the Makefile and asserts if the
newly-generated version is not the same as the one already there. This ensures
that the repository will never be out of date without a buildbot failing.
http://reviews.llvm.org/D21032
llvm-svn: 272024
Some compilers do not mark up C++ functions as extern "C" in the DWARF, so LLDB
has to fall back (if it is about to give up finding a symbol) to using the base
name of the function.
This fix also ensures that we search by full name rather than "auto," which
could cause unrelated C++ names to be found. Finally, it adds a test case.
<rdar://problem/25094302>
llvm-svn: 271551
This change adds the capability of building test inferiors
with the -gmodules flag to enable module debug info support.
Windows is excluded per @zturner.
Reviewers: granata.enrico, aprantl, zturner, labath
Subscribers: zturner, labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D19998
llvm-svn: 270848
Summary:
using stdio in tests does not work on windows, and it is not completely reliable on linux.
Avoid using stdio in this test, as it is not necessary for this purpose.
Reviewers: clayborg
Subscribers: lldb-commits, zturner
Differential Revision: http://reviews.llvm.org/D20567
llvm-svn: 270831
TestBSDArchives.py and TestWatchLocation.py fail due to unicode error and bug has already been reported for arm and macOSx.
TestConstVariables.py fails because lldb cant figure out frame variable type when used in expr.
llvm-svn: 270780
m_decl_objects is problematic because it assumes that each VarDecl has a unique
variable associated with it. This is not the case in inline contexts.
Also the information in this map can be reconstructed very easily without
maintaining the map. The rest of the testsuite passes with this cange, and I've
added a testcase covering the inline contexts affected by this.
<rdar://problem/26278502>
llvm-svn: 270474
Remove XFAIL from some tests that now pass.
Add XFAIL to some tests that now fail.
Fix a crasher where a null pointer check isn't guarded.
Properly handle all types of errors in SymbolFilePDB.
llvm-svn: 269454
1. Fixed semicolon placement in the lambda in the test itself.
2. Fixed lldbinline tests in general so that we don't attempt tests on platforms that don't use the given type of debug info. (For example, no DWO tests on Windows.) This fixes one of the two failures on Windows. (TestLambdas.py was the only inline test that wasn't XFailed or skipped on Windows.)
3. Set the error string in IRInterpreter::CanInterpret so that the caller doesn't print (null) instead of an explanation. I don't entirely understand the error, so feel free to suggest a better wording.
4. XFailed the test on Windows. The interpreter won't evaluate the lambda because the module has multiple function bodies. I don't exactly understand why that's a problem for the interpreter nor why the problem arises only on Windows.
Differential Revision: http://reviews.llvm.org/D19606
llvm-svn: 268573
Also added a data formatter that presents them as structs if you use frame
variable to look at their contents. Now the blocks testcase works.
<rdar://problem/15984431>
llvm-svn: 268307
In templated const functions, trying to run an expression would produce the
error
error: out-of-line definition of '$__lldb_expr' does not match any declaration
in 'foo' member declaration does not match because it is const qualified
error: 1 error parsing expression
which is no good. It turned out we don't actually need to worry about "const,"
we just need to be consistent about the declaration of the expression and the
FunctionDecl we inject into the class for "this."
Also added a test case.
<rdar://problem/24985958>
llvm-svn: 268083
This reverts commit r267833 as it breaks the build. It looks like some work in progress got
committed together with the actual fix, but I'm not sure which one is which, so I'll revert the
whole patch and let author resumbit it after fixing the build error.
llvm-svn: 267861
In templated const functions, trying to run an expression would produce the
error
error: out-of-line definition of '$__lldb_expr' does not match any declaration in 'foo'
member declaration does not match because it is const qualified
error: 1 error parsing expression
which is no good. It turned out we don't actually need to worry about "const,"
we just need to be consistent about the declaration of the expression and the
FunctionDecl we inject into the class for "this."
Also added a test case.
<rdar://problem/24985958>
llvm-svn: 267833
Use __attribute__((regparm(x))) to ensure the compiler enregisters at least some arguments when calling functions.
Differential Revision: http://reviews.llvm.org/D19548
llvm-svn: 267616
Test added in r267248 exposed a bug in handling of dwarf produced by clang>=3.9, which causes a
crash during expression evaluation. Skip the test until this is sorted out.
llvm-svn: 267407
Some older versions of clang emitted bit offsets that were negative and these bitfields would have their bitfield-ness stripped off and it would cause a clang assertion in clang assertions were enabled. I updated the bitfield C test to make sure we don't regress.
<rdar://problem/21082998>
llvm-svn: 267248
A number of test cases were failing on big-endian systems simply due to
byte order assumptions in the tests themselves, and no underlying bug
in LLDB.
These two test cases:
tools/lldb-server/lldbgdbserverutils.py
python_api/process/TestProcessAPI.py
actually check for big-endian target byte order, but contain Python errors
in the corresponding code paths.
These test cases:
functionalities/data-formatter/data-formatter-python-synth/TestDataFormatterPythonSynth.py
functionalities/data-formatter/data-formatter-smart-array/TestDataFormatterSmartArray.py
functionalities/data-formatter/synthcapping/TestSyntheticCapping.py
lang/cpp/frame-var-anon-unions/TestFrameVariableAnonymousUnions.py
python_api/sbdata/TestSBData.py (first change)
could be fixed to check for big-endian target byte order and update the
expected result strings accordingly. For the two synthetic tests, I've
also updated the source to make sure the fake_a value is always nonzero
on both big- and little-endian platforms.
These test case:
python_api/sbdata/TestSBData.py (second change)
functionalities/memory/cache/TestMemoryCache.py
simply accessed memory with the wrong size, which wasn't noticed on LE
but fails on BE.
Differential Revision: http://reviews.llvm.org/D18985
llvm-svn: 266315
This test sets the compiler optimization level to -O1 and
makes some assumptions about how local frame vars will be
stored (i.e. in registers). These assumptions are not always
true.
I did a first-pass set of improvements that:
(1) no longer assumes that every one of the target locations has
every variable in a register. Sometimes the compiler
is even smarter and skips the register entirely.
(2) simply expects one of the 5 or so variables it checks
to be in a register.
This test probably passes on a whole lot more systems than it
used to now. This is certainly true on OS X.
llvm-svn: 265498
the main reason is that our decorator contains extra fluff to "expect" crashes (which seem to
happen occasionaly on the android buildbot).
llvm-svn: 263633
In r262970 this was changed from xfail Clang < 3.5 to > 3.5, but it
still fails on FreeBSD 10's system Clang 3.4.1 so assume it fails on
all versions.
llvm.org/pr26937
llvm-svn: 263467
When the parent of an expression is anonymous, skip adding '.' or '->' before the expression name.
Differential Revision: http://reviews.llvm.org/D18005
llvm-svn: 263166
Summary:
GCC does not emit DW_AT_data_member_location for members of a union.
Starting with a 0 value for member locations helps is reading union types
in such cases.
Reviewers: clayborg
Subscribers: ldrumm, lldb-commits
Differential Revision: http://reviews.llvm.org/D18008
llvm-svn: 263085
The System-V x86_64 ABI requires floating point values to be passed
in 128-but SSE vector registers (xmm0, ...). When printing such a
variable this currently yields an <invalid load address>.
This patch makes LLDB's DWARF expression evaluator accept 128-bit
registers as scalars. It also relaxes the check that the size of the
result of the DWARF expression be equal to the size of the variable to a
greater-than. DWARF defers to the ABI how smaller values are being placed
in a larger register.
Implementation note: I found the code in Value::SetContext() that changes
the m_value_type after the fact to be questionable. I added a sanity check
that the Value's memory buffer has indeed been written to (this is
necessary, because we may have a scalar value in a vector register), but
really I feel like this is the wrong place to be setting it.
Reviewed by Greg Clayton.
http://reviews.llvm.org/D17897
rdar://problem/24944340
llvm-svn: 262947
The inlining semantics for C and C++ are different, which affects the test's expectation of the number of times the function should appear in the binary. In the case of this test, C semantics means there should be three instances of inner_inline, while C++ semantics means there should be only two.
On Windows, clang uses C++ inline semantics even for C code, and there doesn't seem to be a combination of compiler flags to avoid this.
So, for consistency, I've recast the test to use C++ everywhere. Since the test resided under lang/c, it seemed appropriate to move it to lang/cpp.
This does not address the other XFAIL for this test on Linux/gcc. See https://llvm.org/bugs/show_bug.cgi?id=26710
Differential Revision: http://reviews.llvm.org/D17650
llvm-svn: 262255