When writing an inline test, there is no way to make sure that any of
the inline commands are actually executed, so this patch adds a sanity
check that at least one breakpoint was hit. This avoids a test with no
breakpoints being hit passing.
Differential Revision: https://reviews.llvm.org/D43694
llvm-svn: 326140
Normal customer devices won't be able to run these tests, we're hoping to get
a public facing bot set up at some point. Both devices pass the testsuite without
any errors or failures.
I have seen some instability with the armv7 test runs, I may submit additional patches
to address this. arm64 looks good.
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 314132
Normal customer devices won't be able to run these devices, we're hoping to get
a public facing bot set up at some point. Both devices pass the testsuite without
any errors or failures.
I have seen some instability with the armv7 test runs, I may submit additional patches
to address this. arm64 looks good.
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 314038
Normal customer devices won't be able to run these devices, we're hoping to get
a public facing bot set up at some point.
There will be some smaller follow-on patches. The changes to tools/lldb-server are
verbose and I'm not thrilled with having to skip all of these tests manually.
There are a few places where I'm making the assumption that "armv7", "armv7k", "arm64"
means it's an ios device, and I need to review & clean these up with an OS check
as well. (Android will show up as "arm" and "aarch64" so by pure luck they shouldn't
cause problems, but it's not an assumption I want to rely on).
I'll be watching the bots for the rest of today; if any problems are introduced by
this patch I'll revert it - if anyone sees a problem with their bot that I don't
see, please do the same. I know it's a rather large patch.
One change I had to make specifically for iOS devices was that debugserver can't
create files. There were several tests that launch the inferior process redirecting
its output to a file, then they retrieve the file. They were not trying to test
file redirection in these tests, so I rewrote those to write their output to a file
directly.
llvm-svn: 313932
LLDB uses clang::DeclContexts for lookups, and variables get put into
the DeclContext for their abstract origin. (The abstract origin is a
DWARF pointer that indicates the unique definition of inlined code.)
When the expression parser is looking for variables, it locates the
DeclContext for the current context. This needs to be done carefully,
though, e.g.:
__attribute__ ((always_inline)) void f(int a) {
{
int b = a * 2;
}
}
void g() {
f(3);
}
Here, if we're stopped in the inlined copy of f, we have to find the
DeclContext corresponding to the definition of f – its abstract
origin. Clang doesn't allow multiple functions with the same name and
arguments to exist. It also means that any variables we see must be
placed in the appropriate DeclContext.
[Bug 1]: When stopped in an inline block, the function
GetDeclContextDIEContainingDIE for that block doesn't properly
construct a DeclContext for the abstract origin for inlined
subroutines. That means we get duplicated function DeclContexts, but
function arguments only get put in the abstract origin's DeclContext,
and as a result when we try to look for them in nested contexts they
aren't found.
[Bug 2]: When stopped in an inline block, the DWARF (for space
reasons) doesn't explicitly point to the abstract origin for that
block. This means that the function GetClangDeclContextForDIE returns
a different DeclContext for each place the block is inlined. However,
any variables defined in the block have abstract origins, so they
will only get placed in the DeclContext for their abstract origin.
In this fix, I've introduced a test covering both of these issues,
and fixed them.
Bug 1 could be resolved simply by making sure we look up the abstract
origin for inlined functions when looking up their DeclContexts on
behalf of nested blocks.
For Bug 2, I've implemented an algorithm that makes the DeclContext
for a block be the containing DeclContext for the closest entity we
would find during lookup that has an abstract origin pointer. That
means that in the following situation:
{ // block 1
int a;
{ // block 2
int b;
}
}
if we looked up the DeclContext for block 2, we'd find the block
containing the abstract origin of b, and lookup would proceed
correctly because we'd see b and a. However, in the situation
{ // block 1
int a;
{ // block 2
}
}
since there isn't anything to look up in block 2, we can't determine
its abstract origin (and there is no such pointer in the DWARF for
blocks). However, we can walk up the parent chain and find a, and its
abstract origin lives in the abstract origin of block 1. So we simply
say that the DeclContext for block 2 is the same as the DeclContext
for block 1, which contains a. Lookups will return the same results.
Thanks to Jim Ingham for review and suggestions.
Differential revision: https://reviews.llvm.org/D32375
llvm-svn: 301263
m_decl_objects is problematic because it assumes that each VarDecl has a unique
variable associated with it. This is not the case in inline contexts.
Also the information in this map can be reconstructed very easily without
maintaining the map. The rest of the testsuite passes with this cange, and I've
added a testcase covering the inline contexts affected by this.
<rdar://problem/26278502>
llvm-svn: 270474