Commit Graph

193 Commits

Author SHA1 Message Date
Haicheng Wu
109f4f3509 [LoopUnroll] Correct a debug message. NFC.
Differential Revision: https://reviews.llvm.org/D24299

llvm-svn: 280865
2016-09-07 21:30:16 +00:00
Adam Nemet
4f155b6e91 [LoopUnroll] Use OptimizationRemarkEmitter directly not via the analysis pass
We can't mark ORE (a function pass) preserved as required by the loop
passes because that is how we ensure that the required passes like
LazyBFI are all available any time ORE is used.  See the new comments in
the patch.

Instead we use it directly just like the inliner does in D22694.

As expected there is some additional overhead after removing the caching
provided by analysis passes.  The worst case, I measured was
LNT/CINT2006_ref/401.bzip2 which regresses by 12%.  As before, this only
affects -Rpass-with-hotness and not default compilation.

llvm-svn: 279829
2016-08-26 15:58:34 +00:00
Michael Zolotukhin
bd63d436c1 [LoopUnroll] By default disable unrolling when optimizing for size.
Summary:
In clang commit r268509 we started to invoke loop-unroll pass from the
driver even under -Os. However, we happen to not initialize optsize
thresholds properly, which si fixed with this change.

r268509 led to some big compile time regressions, because we started to
unroll some loops that we didn't unroll before. With this change I hope
to recover most of the regressions. We still are slightly slower than
before, because we do some checks here and there in loop-unrolling
before we bail out, but at least the slowdown is not that huge now.

Reviewers: hfinkel, chandlerc

Subscribers: mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D23388

llvm-svn: 279585
2016-08-23 23:13:15 +00:00
Haicheng Wu
e787763275 [LoopUnroll] Move a simple check earlier. NFC.
Move the check of CallInst earlier to skip expensive recursive operations.

Differential Revision: https://reviews.llvm.org/D23611

llvm-svn: 278998
2016-08-17 22:42:58 +00:00
Sean Silva
0746f3bfa4 Consistently use LoopAnalysisManager
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).

Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.

Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278079
2016-08-09 00:28:52 +00:00
Adam Nemet
12937c361f [LoopUnroll] Include hotness of region in opt remark
LoopUnroll is a loop pass, so the analysis of OptimizationRemarkEmitter
is added to the common function analysis passes that loop passes
depend on.

The BFI and indirectly BPI used in this pass is computed lazily so no
overhead should be observed unless -pass-remarks-with-hotness is used.

This is how the patch affects the O3 pipeline:

         Dominator Tree Construction
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Rotate Loops
           Loop Invariant Code Motion
           Unswitch loops
         Simplify the CFG
         Dominator Tree Construction
         Basic Alias Analysis (stateless AA impl)
         Function Alias Analysis Results
         Combine redundant instructions
         Natural Loop Information
         Canonicalize natural loops
         Loop-Closed SSA Form Pass
         Scalar Evolution Analysis
+        Lazy Branch Probability Analysis
+        Lazy Block Frequency Analysis
+        Optimization Remark Emitter
         Loop Pass Manager
           Induction Variable Simplification
           Recognize loop idioms
           Delete dead loops
           Unroll loops
...

llvm-svn: 277203
2016-07-29 19:29:47 +00:00
Sean Silva
e3c18a5ae8 [PM] Port LoopUnroll.
We just set PreserveLCSSA to always true since we don't have an
analogous method `mustPreserveAnalysisID(LCSSA)`.

Also port LoopInfo verifier pass to test LoopUnrollPass.

llvm-svn: 276063
2016-07-19 23:54:23 +00:00
David Majnemer
4a697c312f [LoopUnroll] Don't crash trying to unroll loop with EH pad exit
We do not support splitting cleanuppad or catchswitches.  This is
problematic for passes which assume that a loop is in loop simplify
form (the loop would have a dedicated exit block instead of sharing it).

While it isn't great that we don't support this for cleanups, we still
cannot make loop-simplify form an assertable precondition because
indirectbr will also disable these sorts of CFG cleanups.

This fixes PR28132.

llvm-svn: 272739
2016-06-15 00:19:56 +00:00
Evgeny Stupachenko
3e2f389a7e The patch set unroll disable pragma when unroll
with user specified count has been applied.

Summary:
Previously SetLoopAlreadyUnrolled() set the disable pragma only if
there was some loop metadata.
Now it set the pragma in all cases. This helps to prevent multiple
unroll when -unroll-count=N is given.

Reviewers: mzolotukhin

Differential Revision: http://reviews.llvm.org/D20765

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 272195
2016-06-08 20:21:24 +00:00
Michael Zolotukhin
585649895f [LoopUnroll] Set correct thresholds for new recently enabled unrolling heuristic.
In r270478, where I enabled the new heuristic I posted testing results,
which I got when explicitly passed the thresholds values via CL options.
However, setting the CL options init-values is not enough to change the
default values of thresholds, so I'm changing them in another place now.

llvm-svn: 271615
2016-06-03 00:16:46 +00:00
Evgeny Stupachenko
b787522d28 The patch fixes r271071
Summary:
unused variables in Release mode:
  BasicBlock *Header
  unsigned OrigCount
put under DEBUG

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 271076
2016-05-28 00:14:58 +00:00
Evgeny Stupachenko
ea2aef4a1d The patch refactors unroll pass.
Summary:
Unroll factor (Count) calculations moved to a new function.
Early exits on pragma and "-unroll-count" defined factor added.
New type of unrolling "Force" introduced (previously used implicitly).
New unroll preference "AllowRemainder" introduced and set "true" by default.
(should be set to false for architectures that suffers from it).

Reviewers: hfinkel, mzolotukhin, zzheng

Differential Revision: http://reviews.llvm.org/D19553

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 271071
2016-05-27 23:15:06 +00:00
Benjamin Kramer
82de7d323d Apply clang-tidy's misc-move-constructor-init throughout LLVM.
No functionality change intended, maybe a tiny performance improvement.

llvm-svn: 270997
2016-05-27 14:27:24 +00:00
Michael Zolotukhin
1ecdedad8d [LoopUnrollAnalyzer] Fix a crash in analyzeLoopUnrollCost.
Condition might be simplified to a Constant, but it doesn't have to be
ConstantInt, so we should dyn_cast, instead of cast.

This fixes PR27886.

llvm-svn: 270924
2016-05-26 21:42:51 +00:00
Michael Zolotukhin
8f7a242c7b Re-enable "[LoopUnroll] Enable advanced unrolling analysis by default" one more time.
This reverts commit r270577.

llvm-svn: 270630
2016-05-24 23:00:05 +00:00
Hans Wennborg
b64e4390a3 Revert r270518, which re-enabled "[LoopUnroll] Enable advanced unrolling analysis by default.
Chromium builds are still hitting the assert in PR27874.

llvm-svn: 270577
2016-05-24 16:10:12 +00:00
Michael Zolotukhin
96c150d154 Revert "Revert r270478 "[LoopUnroll] Enable advanced unrolling analysis by default.""
This reverts commit r270512 and reapplies r270478. Originally it caused
PR27847, but it was fixed in r270517.

llvm-svn: 270518
2016-05-24 01:22:20 +00:00
Hans Wennborg
6951028b61 Revert r270478 "[LoopUnroll] Enable advanced unrolling analysis by default."
This caused PR27847.

llvm-svn: 270512
2016-05-23 23:42:35 +00:00
Michael Zolotukhin
be080fc51d [LoopUnroll] Enable advanced unrolling analysis by default.
Summary:
This patch turns on LoopUnrollAnalyzer by default. To mitigate compile
time regressions, I chose very conservative thresholds for now. Later we
can make them more aggressive, but it might require being smarter in
which loops we're optimizing. E.g. currently the biggest issue is that
with more agressive thresholds we unroll many cold loops, which
increases compile time for no performance benefit (performance of those
loops is improved, but it doesn't matter since they are cold).

Test results for compile time(using 4 samples to reduce noise):
```
MultiSource/Benchmarks/VersaBench/ecbdes/ecbdes 5.19%
SingleSource/Benchmarks/Polybench/medley/reg_detect/reg_detect  4.19%
MultiSource/Benchmarks/FreeBench/fourinarow/fourinarow  3.39%
MultiSource/Applications/JM/lencod/lencod 1.47%
MultiSource/Benchmarks/Fhourstones-3_1/fhourstones3_1 -6.06%
```

I didn't see any performance changes in the testsuite, but it improves
some internal tests.

Reviewers: hfinkel, chandlerc

Subscribers: llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D20482

llvm-svn: 270478
2016-05-23 19:10:19 +00:00
Michael Zolotukhin
d2268a73bc [LoopUnrollAnalyzer] Take into account cost of instructions controlling branches, along with their operands.
Previously, we didn't add their and their operands cost, which could've
resulted in unrolling loops for no actual benefit.

llvm-svn: 269985
2016-05-18 21:20:12 +00:00
Michael Zolotukhin
963a6d9c69 Revert "Revert "[Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the...""
This reverts commit r269395.

Try to reapply with a fix from chapuni.

llvm-svn: 269486
2016-05-13 21:23:25 +00:00
Michael Zolotukhin
9be3b8b9bb Revert "[Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the..."
This reverts commit r269388.

It caused some bots to fail, I'm reverting it until I investigate the
issue.

llvm-svn: 269395
2016-05-13 06:32:25 +00:00
Michael Zolotukhin
b7b8052982 [Unroll] Implement a conservative and monotonically increasing cost tracking system during the full unroll heuristic analysis that avoids counting any instruction cost until that instruction becomes "live" through a side-effect or use outside the...
Summary:
...loop after the last iteration.

This is really hard to do correctly. The core problem is that we need to
model liveness through the induction PHIs from iteration to iteration in
order to get the correct results, and we need to correctly de-duplicate
the common subgraphs of instructions feeding some subset of the
induction PHIs. All of this can be driven either from a side effect at
some iteration or from the loop values used after the loop finishes.

This patch implements this by storing the forward-propagating analysis
of each instruction in a cache to recall whether it was free and whether
it has become live and thus counted toward the total unroll cost. Then,
at each sink for a value in the loop, we recursively walk back through
every value that feeds the sink, including looping back through the
iterations as needed, until we have marked the entire input graph as
live. Because we cache this, we never visit instructions more than twice
-- once when we analyze them and put them into the cache, and once when
we count their cost towards the unrolled loop. Also, because the cache
is only two bits and because we are dealing with relatively small
iteration counts, we can store all of this very densely in memory to
avoid this from becoming an excessively slow analysis.

The code here is still pretty gross. I would appreciate suggestions
about better ways to factor or split this up, I've stared too long at
the algorithmic side to really have a good sense of what the design
should probably look at.

Also, it might seem like we should do all of this bottom-up, but I think
that is a red herring. Specifically, the simplification power is *much*
greater working top-down. We can forward propagate very effectively,
even across strange and interesting recurrances around the backedge.
Because we use data to propagate, this doesn't cause a state space
explosion. Doing this level of constant folding, etc, would be very
expensive to do bottom-up because it wouldn't be until the last moment
that you could collapse everything. The current solution is essentially
a top-down simplification with a bottom-up cost accounting which seems
to get the best of both worlds. It makes the simplification incremental
and powerful while leaving everything dead until we *know* it is needed.

Finally, a core property of this approach is its *monotonicity*. At all
times, the current UnrolledCost is a conservatively low estimate. This
ensures that we will never early-exit from the analysis due to exceeding
a threshold when if we had continued, the cost would have gone back
below the threshold. These kinds of bugs can cause incredibly hard to
track down random changes to behavior.

We could use a techinque similar (but much simpler) within the inliner
as well to avoid considering speculated code in the inline cost.

Reviewers: chandlerc

Subscribers: sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D11758

llvm-svn: 269388
2016-05-13 01:42:39 +00:00
Hans Wennborg
719b26ba54 Loop unroller: set thresholds for optsize and minsize functions to zero
Before r268509, Clang would disable the loop unroll pass when optimizing
for size. That commit enabled it to be able to support unroll pragmas
in -Os builds. However, this regressed binary size in one of Chromium's
DLLs with ~100 KB.

This restores the original behaviour of no unrolling at -Os, but doing it
in LLVM instead of Clang makes more sense, and also allows the pragmas to
keep working.

Differential revision: http://reviews.llvm.org/D20115

llvm-svn: 269124
2016-05-10 21:45:55 +00:00
Dehao Chen
d55bc4c7ab clang-format some files in preparation of coming patch reviews.
llvm-svn: 268583
2016-05-05 00:54:54 +00:00
Andrew Kaylor
aa641a5171 Re-commit optimization bisect support (r267022) without new pass manager support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267231
2016-04-22 22:06:11 +00:00
Vedant Kumar
6013f45f92 Revert "Initial implementation of optimization bisect support."
This reverts commit r267022, due to an ASan failure:

  http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549

llvm-svn: 267115
2016-04-22 06:51:37 +00:00
Andrew Kaylor
f0f279291c Initial implementation of optimization bisect support.
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.

The bisection is enabled using a new command line option (-opt-bisect-limit).  Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit.  A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.

The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check.  Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute.  A new function call has been added for module and SCC passes that behaves in a similar way.

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267022
2016-04-21 17:58:54 +00:00
Fiona Glaser
045afc4f66 Loop Unroll: add options and tweak to make Partial unrolling more useful
1. Add FullUnrollMaxCount option that works like MaxCount, but also limits
   the unroll count for fully unrolled loops. So if a loop has an iteration
   count over this, it won't fully unroll.
2. Add CLI options for MaxCount and the new option, so they can be tested
   (plus a test).
3. Make partial unrolling obey MaxCount.

An example use-case (the out of tree one this is originally designed for) is
a target’s TTI can analyze a loop and decide on a max unroll count separate
from the size threshold, e.g. based on register pressure, then constrain
LoopUnroll to not exceed that, regardless of the size of the unrolled loop.

llvm-svn: 265562
2016-04-06 16:57:25 +00:00
Fiona Glaser
16332ba861 LoopUnroll: only allow non-modulo Partial unrolling when Runtime=true
Patch by Evgeny Stupachenko <evstupac@gmail.com>.

llvm-svn: 265558
2016-04-06 16:43:45 +00:00
Zia Ansari
a82a58a4e5 Enable unroll for constant bound loops when TripCount is not modulo of unroll factor, reducing it to maximum power-of-2 that satisfies threshold limit.
Commit for Evgeny Stupachenko (evstupac@gmail.com)

Differential Revision: http://reviews.llvm.org/D18290

llvm-svn: 265337
2016-04-04 19:24:46 +00:00
David L Kreitzer
8d441eb936 Enable non-power-of-2 #pragma unroll counts.
Patch by Evgeny Stupachenko.

Differential Revision: http://reviews.llvm.org/D18202

llvm-svn: 264407
2016-03-25 14:24:52 +00:00
Justin Lebar
6827de19b2 [LoopUnroll] Respect the convergent attribute.
Summary:
Specifically, when we perform runtime loop unrolling of a loop that
contains a convergent op, we can only unroll k times, where k divides
the loop trip multiple.

Without this change, we'll happily unroll e.g. the following loop

  for (int i = 0; i < N; ++i) {
    if (i == 0) convergent_op();
    foo();
  }

into

  int i = 0;
  if (N % 2 == 1) {
    convergent_op();
    foo();
    ++i;
  }
  for (; i < N - 1; i += 2) {
    if (i == 0) convergent_op();
    foo();
    foo();
  }.

This is unsafe, because we've just added a control-flow dependency to
the convergent op in the prelude.

In general, runtime unrolling loops that contain convergent ops is safe
only if we don't have emit a prelude, which occurs when the unroll count
divides the trip multiple.

Reviewers: resistor

Subscribers: llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D17526

llvm-svn: 263509
2016-03-14 23:15:34 +00:00
Sanjay Patel
f831fdb56a fix variable name; NFC
llvm-svn: 262953
2016-03-08 19:07:42 +00:00
Sanjay Patel
5c96723622 use range-based loop; NFCI
llvm-svn: 262952
2016-03-08 19:06:12 +00:00
Michael Zolotukhin
9f520ebc54 [LoopUnrollAnalyzer] Check that we're using SCEV for the same loop we're simulating.
Summary: Check that we're using SCEV for the same loop we're simulating. Otherwise, we might try to use the iteration number of the current loop in SCEV expressions for inner/outer loops IVs, which is clearly incorrect.

Reviewers: chandlerc, hfinkel

Subscribers: sanjoy, llvm-commits, mzolotukhin

Differential Revision: http://reviews.llvm.org/D17632

llvm-svn: 261958
2016-02-26 02:57:05 +00:00
Chandler Carruth
31088a9d58 [LPM] Factor all of the loop analysis usage updates into a common helper
routine.

We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.

The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.

With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.

I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.

LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.

Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.

Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!

Differential Revision: http://reviews.llvm.org/D17435

llvm-svn: 261316
2016-02-19 10:45:18 +00:00
Michael Zolotukhin
1da4afdfc9 Factor out UnrollAnalyzer to Analysis, and add unit tests for it.
Summary:
Unrolling Analyzer is already pretty complicated, and it becomes harder and harder to exercise it with usual IR tests, as with them we can only check the final decision: whether the loop is unrolled or not. This change factors this framework out from LoopUnrollPass to analyses, which allows to use unit tests.
The change itself is supposed to be NFC, except adding a couple of tests.

I plan to add more tests as I add new functionality and find/fix bugs.

Reviewers: chandlerc, hfinkel, sanjoy

Subscribers: zzheng, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D16623

llvm-svn: 260169
2016-02-08 23:03:59 +00:00
Justin Bogner
b8d82abb78 LoopUnroll: Move the actual unrolling logic to a standalone function. NFC
This is pure code motion - break the actual work out of runOnLoop into
a reusable standalone function.

llvm-svn: 257445
2016-01-12 05:21:37 +00:00
Justin Bogner
921b04e9a4 LoopUnroll: Make canUnrollCompletely static - it doesn't use any state. NFC
llvm-svn: 257427
2016-01-12 01:06:32 +00:00
Justin Bogner
a1dd493159 LoopUnroll: Clean up the maze of initialization for unroll parameters. NFC
The layering of where the various loop unroll parameters are
initialized and overridden here was very confusing, making it pretty
difficult to tell just how the various sources interacted. Instead, we
put all of the initialization logic together in a single function so
that it's obvious what overrides what.

llvm-svn: 257426
2016-01-12 00:55:26 +00:00
Justin Bogner
0fb7ed5726 LoopUnroll: Use the optsize threshold for minsize as well
Currently we're unrolling loops more in minsize than in optsize, which
means -Oz will have a larger code size than -Os. That doesn't make any
sense.

This resolves the FIXME about this in LoopUnrollPass and extends the
optsize test to make sure we use the smaller threshold for minsize as
well.

llvm-svn: 257402
2016-01-11 22:39:43 +00:00
Justin Bogner
883a3ea67f LPM: Make callers of LPM.deleteLoopFromQueue update LoopInfo directly. NFC
As of r255720, the loop pass manager will DTRT when passes update the
loop info for removed loops, so they no longer need to reach into
LPPassManager APIs to do this kind of transformation. This change very
nearly removes the need for the LPPassManager to even be passed into
loop passes - the only remaining pass that uses the LPM argument is
LoopUnswitch.

llvm-svn: 255797
2015-12-16 18:40:20 +00:00
Justin Bogner
843fb204b7 LPM: Stop threading Pass * through all of the loop utility APIs. NFC
A large number of loop utility functions take a `Pass *` and reach
into it to find out which analyses to preserve. There are a number of
problems with this:

- The APIs have access to pretty well any Pass state they want, so
  it's hard to tell what they may or may not do.

- Other APIs have copied these and pass around a `Pass *` even though
  they don't even use it. Some of these just hand a nullptr to the API
  since the callers don't even have a pass available.

- Passes in the new pass manager don't work like the current ones, so
  the APIs can't be used as is there.

Instead, we should explicitly thread the analysis results that we
actually care about through these APIs. This is both simpler and more
reusable.

llvm-svn: 255669
2015-12-15 19:40:57 +00:00
Benjamin Kramer
6db3338cb1 [ScalarOpts] Remove dead code.
Does not touch debug dumpers. NFC.

llvm-svn: 250417
2015-10-15 15:08:58 +00:00
Michael Zolotukhin
deade19630 [Unroll] Do not crash trying to propagate a value to vector load.
llvm-svn: 248333
2015-09-22 22:27:12 +00:00
Michael Zolotukhin
8bb31dd08a [Unroll] Follow-up for r247769: fix a bug in UnrolledInstAnalyzer::visitLoad.
Apart from checking that GlobalVariable is a constant, we should check
that it's not a weak constant, in which case we can't propagate its
value.

llvm-svn: 248327
2015-09-22 21:41:29 +00:00
Michael Zolotukhin
fc314be0ec [Unroll] Fix a bug in UnrolledInstAnalyzer::visitLoad.
We only checked that a global is initialized with constants, which is
incorrect. We should be checking that GlobalVariable *is* a constant,
not just initialized with it.

llvm-svn: 247769
2015-09-16 03:25:09 +00:00
James Molloy
efbba72cb2 Add GlobalsAA as preserved to a bunch of transforms
GlobalsAA must by definition be preserved in function passes, but the passmanager doesn't know that. Make each pass explicitly preserve GlobalsAA.

llvm-svn: 247263
2015-09-10 10:22:12 +00:00
Benjamin Kramer
fcdb1c14ac Make helper functions static. NFC.
llvm-svn: 245549
2015-08-20 09:57:22 +00:00