that it is its own entity in the form of MemoryLocation, and update all
the callers.
This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.
llvm-svn: 239885
port it to the new pass manager.
All this does is extract the inner "location" class used by AA into its
own full fledged type. This seems *much* cleaner as MemoryDependence and
soon MemorySSA also use this heavily, and it doesn't make much sense
being inside the AA infrastructure.
This will also make it much easier to break apart the AA infrastructure
into something that stands on its own rather than using the analysis
group design.
There are a few places where this makes APIs not make sense -- they were
taking an AliasAnalysis pointer just to build locations. I'll try to
clean those up in follow-up commits.
Differential Revision: http://reviews.llvm.org/D10228
llvm-svn: 239003
CallSite roughly behaves as a common base CallInst and InvokeInst. Bring
the behavior closer to that model by making upcasts explicit. Downcasts
remain implicit and work as before.
Following dyn_cast as a mental model checking whether a Value *V isa
CallSite now looks like this:
if (auto CS = CallSite(V)) // think dyn_cast
instead of:
if (CallSite CS = V)
This is an extra token but I think it is slightly clearer. Making the
ctor explicit has the advantage of not accidentally creating nullptr
CallSites, e.g. when you pass a Value * to a function taking a CallSite
argument.
llvm-svn: 234601
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.
This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.
I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.
I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.
Test Plan:
Reviewers: echristo
Subscribers: llvm-commits
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.
This is in preparation for porting this analysis to the new pass
manager.
No functionality changed, and updates inbound for Clang and Polly.
llvm-svn: 226078
DSE's overlap checking contained special logic, used only when no DataLayout
was available, which inferred a complete overwrite when the pointee types were
equal. This logic seems fine for regular loads/stores, but does not work for
memcpy and friends. Instead of fixing this, I'm just removing it.
Philosophically, transformations should not contain enhanced behavior used only
when data layout is lacking (data layout should be strictly additive), and
maintaining these rarely-tested code paths seems not worthwhile at this stage.
Credit to Aliaksei Zasenka for the bug report and the diagnosis. The test case
(slightly reduced from that provided by Aliaksei) replaces the original
contents of test/Transforms/DeadStoreElimination/no-targetdata.ll -- a few
other tests have been updated to have a data layout.
llvm-svn: 220035
Optimize the following IR:
%1 = tail call noalias i8* @calloc(i64 1, i64 4)
%2 = bitcast i8* %1 to i32*
; This store is dead and should be removed
store i32 0, i32* %2, align 4
Memory returned by calloc is guaranteed to be zero initialized. If the value being stored is the constant zero (and the store is not otherwise observable across threads), we can delete the store. If the store is to an out of bounds address, it is undefined and thus also removable.
Reviewed By: nicholas
Differential Revision: http://reviews.llvm.org/D3942
llvm-svn: 214897
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
remove_if that its predicate is adaptable. We don't actually need this,
we can write a generic adapter for any predicate.
This lets us remove some very wrong std::function usages. We should
never be using std::function for predicates to algorithms. This incurs
an *indirect* call overhead for every evaluation of the predicate, and
makes it very hard to inline through.
llvm-svn: 202742
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.
llvm-svn: 200892
Summary:
I searched Transforms/ and Analysis/ for 'ByVal' and updated those call
sites to check for inalloca if appropriate.
I added tests for any change that would allow an optimization to fire on
inalloca.
Reviewers: nlewycky
Differential Revision: http://llvm-reviews.chandlerc.com/D2449
llvm-svn: 200281
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
llvm-svn: 199104
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
llvm-svn: 199082
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Erasing from the beginning or middle of the vector is expensive, remove_if can
do it in linear time even though it's a bit ugly without lambdas.
No functionality change.
llvm-svn: 165903
This disables malloc-specific optimization when -fno-builtin (or -ffreestanding)
is specified. This has been a problem for a long time but became more severe
with the recent memory builtin improvements.
Since the memory builtin functions are used everywhere, this required passing
TLI in many places. This means that functions that now have an optional TLI
argument, like RecursivelyDeleteTriviallyDeadFunctions, won't remove dead
mallocs anymore if the TLI argument is missing. I've updated most passes to do
the right thing.
Fixes PR13694 and probably others.
llvm-svn: 162841
- provide more extensive set of functions to detect library allocation functions (e.g., malloc, calloc, strdup, etc)
- provide an API to compute the size and offset of an object pointed by
Move a few clients (GVN, AA, instcombine, ...) to the new API.
This implementation is a lot more aggressive than each of the custom implementations being replaced.
Patch reviewed by Nick Lewycky and Chandler Carruth, thanks.
llvm-svn: 158919
Size of data being pointed to wasn't always being checked so some small writes were killing big writes
Fixes <rdar://problem/10426753>
llvm-svn: 144312
Currently checks alignment and killing stores on a power of 2 boundary as this is likely
to trim the size of the earlier store without breaking large vector stores into scalar ones.
Fixes <rdar://problem/10140300>
llvm-svn: 144239
Only currently done if the later store is writing to a power of 2 address or
has the same alignment as the earlier store as then its likely to not break up
large stores into smaller ones
Fixes <rdar://problem/10140300>
llvm-svn: 143630
that one of the numbers is signed while the other is unsigned. This could lead
to a wrong result when the signed was promoted to an unsigned int.
* Add the data layout line to the testcase so that it will test the appropriate
thing.
Patch by David Terei!
llvm-svn: 128577
There are two ways that a later store can comletely overlap a previous store:
1. They both start at the same offset, but the earlier store's size is <= the
later's size, or
2. The earlier store's offset is > the later's offset, but it's offset + size
doesn't extend past the later's offset + size.
llvm-svn: 128332
with BasicAA's DecomposeGEPExpression, which recently began
using a TargetData. This fixes PR8968, though the testcase
is awkward to reduce.
Also, update several off GetUnderlyingObject's users
which happen to have a TargetData handy to pass it in.
llvm-svn: 124134
memcpy's like:
memcpy(A, B)
memcpy(A, C)
we cannot delete the first memcpy as dead if A and C might be aliases.
If so, we actually get:
memcpy(A, B)
memcpy(A, A)
which is not correct to transform into:
memcpy(A, A)
This patch was heavily influenced by Jakub Staszak's patch in PR8728, thanks
Jakub!
llvm-svn: 120974
1. if the underlying pointer passed in can be resolved
to any argument or alloca, then we don't need to scan.
Previously we would only avoid the scan if the alloca
or byval was actually considered dead.
2. The dead store processing code is itself completely
dead and didn't handle volatile stores right anyway,
so delete it. This allows simplifying the interface
to RemoveAccessedObjects.
llvm-svn: 120467
made sense to me. We now have a set of dead stack objects, and
they become live when loaded. Fix a theoretical problem where
we'd pass in the wrong pointer to the alias query.
llvm-svn: 120465
If the call might read all the allocas, stop scanning early.
Convert a vector to smallvector, shrink SmallPtrSet to 16 instead
of 64 to avoid crazy linear scans.
llvm-svn: 120463
about pairs of AA::Location's instead of looking for MemDep's
"Def" predicate. This is more powerful and general, handling
memset/memcpy/store all uniformly, and implementing PR8701 and
probably obsoleting parts of memcpyoptimizer.
This also fixes an obscure bug with init.trampoline and i8
stores, but I'm not surprised it hasn't been hit yet. Enhancing
init.trampoline to carry the size that it stores would allow
DSE to be much more aggressive about optimizing them.
llvm-svn: 120406
contains "ref".
Enhance DSE to use a modref query instead of a store-specific hack
to generalize the "ignore may-alias stores" optimization to handle
memset and memcpy.
llvm-svn: 120368
1. Don't bother trying to optimize:
lifetime.end(ptr)
store(ptr)
as it is undefined, and therefore shouldn't exist.
2. Move the 'storing a loaded pointer' xform up, simplifying
the may-aliased store code.
llvm-svn: 120359
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820