This is forcing to use Error::success(), which is in a wide majority
of cases a lot more readable.
Differential Revision: https://reviews.llvm.org/D26481
llvm-svn: 286561
The mock server was listening for only one packet (I forgot to put a loop around
it), which caused the client to stall in debug builds, as the timeout there is
1000 seconds. In case of a release builds the test would just silently succeed as
the tested function does not check or report errors (which should be fixed).
This fixes the test by adding the server loop. Since the test was taking quite a
long time now (8s), I have added a parameter to control the amount of data sent
(default 4MB), and call it with a smaller value in the test, to make the test run
faster.
llvm-svn: 285992
Summary:
Most of the changes are very straight-forward, the only tricky part was the
"packet speed-test" function, which is very time-heavy. As the function was
completely untested, I added a quick unit smoke test for it.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D25391
llvm-svn: 285602
This patch also marks the const char* versions as =delete to prevent
their use. This has the potential to cause build breakages on some
platforms which I can't compile. I have tested on Windows, Linux,
and OSX. Best practices for fixing broken callsites are outlined in
Args.h in a comment above the deleted function declarations.
Eventually we can remove these =delete declarations, but for now they
are important to make sure that all implicit conversions from
const char * are manually audited to make sure that they do not invoke a
conversion from nullptr.
llvm-svn: 281919
This change does the following:
* Changes the signature for the continuation delegate method that handles
async structured data from accepting an already-parsed structured data
element to taking just the packet contents.
* Moves the conversion of the JSON-async: packet contents from
GDBRemoteClientBase to the continuation delegate method.
* Adds a new unit test for verifying that the $JSON-asyc: packets get
decoded and that the decoded packets get forwarded on to the delegate
for further processing. Thanks to Pavel for making that whole section of
code easily unit testable!
* Tightens up the packet verification on reception of a $JSON-async:
packet contents. The code prior to this change is susceptible to a
segfault if a packet is carefully crafted that starts with $J but
has a total length shorter than the length of "$JSON-async:".
Reviewers: labath, clayborg, zturner
Differential Revision: https://reviews.llvm.org/D23884
llvm-svn: 281121
Summary:
This adds the jModulesInfo packet, which is the equivalent of qModulesInfo, but it enables us to
query multiple modules at once. This makes a significant speed improvement in case the
application has many (over a hundred) modules, and the communication link has a non-negligible
latency. This functionality is accessed by ProcessGdbRemote::PrefetchModuleSpecs(), which does
the caching. GetModuleSpecs() is modified to first consult the cache before asking the remote
stub. PrefetchModuleSpecs is currently only called from POSIX-DYLD dynamic loader plugin, after
it reads the list of modules from the inferior memory, but other uses are possible.
This decreases the attach time to an android application by about 40%.
Reviewers: clayborg
Subscribers: tberghammer, lldb-commits, danalbert
Differential Revision: https://reviews.llvm.org/D24236
llvm-svn: 280919
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This reverts commit rL280668 because the register tests fail on i386
Linux.
I investigated a little bit what causes the failure - there are missing
registers when running 'register read -a'.
This is the output I got at the bottom:
"""
...
Memory Protection Extensions:
bnd0 = {0x0000000000000000 0x0000000000000000}
bnd1 = {0x0000000000000000 0x0000000000000000}
bnd2 = {0x0000000000000000 0x0000000000000000}
bnd3 = {0x0000000000000000 0x0000000000000000}
unknown:
2 registers were unavailable.
"""
Also looking at the packets exchanged between the client and server:
"""
...
history[308] tid=0x7338 < 19> send packet: $qRegisterInfo4a#d7
history[309] tid=0x7338 < 130> read packet:
$name:bnd0;bitsize:128;offset:1032;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:101;dwarf:101;#48
history[310] tid=0x7338 < 19> send packet: $qRegisterInfo4b#d8
history[311] tid=0x7338 < 130> read packet:
$name:bnd1;bitsize:128;offset:1048;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:102;dwarf:102;#52
history[312] tid=0x7338 < 19> send packet: $qRegisterInfo4c#d9
history[313] tid=0x7338 < 130> read packet:
$name:bnd2;bitsize:128;offset:1064;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:103;dwarf:103;#53
history[314] tid=0x7338 < 19> send packet: $qRegisterInfo4d#da
history[315] tid=0x7338 < 130> read packet:
$name:bnd3;bitsize:128;offset:1080;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:104;dwarf:104;#54
history[316] tid=0x7338 < 19> send packet: $qRegisterInfo4e#db
history[317] tid=0x7338 < 76> read packet:
$name:bndcfgu;bitsize:64;offset:1096;encoding:vector;format:vector-uint8;#99
history[318] tid=0x7338 < 19> send packet: $qRegisterInfo4f#dc
history[319] tid=0x7338 < 78> read packet:
$name:bndstatus;bitsize:64;offset:1104;encoding:vector;format:vector-uint8;#8e
...
"""
The bndcfgu and bndstatus registers don't have the 'Memory Protections
Extension' set. I looked at the code and it seems that that is set
correctly.
So I'm not sure what's the problem or where does it come from.
Also there is a second failure related to something like this in the
tests:
"""
registerSet.GetName().lower()
"""
For some reason the registerSet.GetName() returns None.
llvm-svn: 280703
Summary:
The Intel(R) Memory Protection Extensions (Intel(R) MPX) associates pointers
to bounds, against which the software can check memory references to
prevent out of bound memory access.
This patch allows accessing the MPX registers:
* bnd0-3: 128-bit registers to hold the bound values,
* bndcfgu, bndstatus: 64-bit configuration registers,
This patch also adds read/write tests for the MPX registers in the register
command tests and adds a new subdirectory for MPX specific tests.
Signed-off-by: Valentina Giusti <valentina.giusti@intel.com>
Reviewers: labath, granata.enrico, lldb-commits, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24187
llvm-svn: 280668
MutableArrayRef<T> is essentially a safer version of passing around
(T*, length) pairs and provides some convenient functions for working
with the data without having to manually manipulate indices.
This is a minor NFC.
llvm-svn: 280123
StringExtractor::GetNameColonValue() looks for a substring of the
form "<name>:<value>" and returns <name> and <value> to the caller.
This results in two unnecessary string copies, since the name and
value are not translated in any way and simply returned as-is.
By converting this to return StringRefs we can get rid of hundreds
of string copies.
llvm-svn: 280000
Summary:
This is a preparatory commit for D22914, where I'd like to replace this mutex by an R/W lock
(which is also not recursive). This required a couple of changes:
- The only caller of Read/WriteRegister, GDBRemoteRegisterContext class, was already acquiring
the mutex, so these functions do not need to. All functions which now do not take a lock, take
an lock argument instead, to remind the caller of this fact.
- GetThreadSuffixSupported() was being called from locked and unlocked contexts (including
contexts where the process was running, and the call would fail if it did not have the result
cached). I have split this into two functions, one which computes the thread suffix support and
caches it (this one always takes the lock), and another, which returns the cached value (and
never needs to take the lock). This feels quite natural as ProcessGdbRemote was already
pre-caching this value at the start.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D23802
llvm-svn: 279725
Summary:
The tricky part here was that the exisiting implementation of WriteAllRegisters was expecting
hex-encoded data (as that was what the first implementation I replaced was using, but here we had
binary data to begin with. I thought the read/write register functions would be more useful if
they handled the hex-encoding themselves (all the other client functions provide the responses in
a more-or-less digested form). The read functions return a DataBuffer, so they can allocate as
much memory as they need to, while the write functions functions take an llvm::ArrayRef, as that
can be constructed from pretty much anything.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D23659
llvm-svn: 279232
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
This change opens a socket pair and passes the second socket pair file descriptor down to the debugserver binary using a new option: "--fd=N" where N is the file descriptor. This file descriptor gets passed via posix_spawn() so that there is no need to do any bind/listen or bind/accept calls and eliminates the hanshake unix socket that is used to pass the result of the actual port that ends up being used so it can save time on launch as well as being faster.
This is currently only enabled on __APPLE__ builds. Other OSs should try modifying the #define from ProcessGDBRemote.cpp but the first person will need to port the --fd option over to lldb-server. Any OSs that enable USE_SOCKETPAIR_FOR_LOCAL_CONNECTION in their native builds can use the socket pair stuff. The #define is Apple only right now, but looks like:
#if defined (__APPLE__)
#define USE_SOCKETPAIR_FOR_LOCAL_CONNECTION 1
#endif
<rdar://problem/27814880>
llvm-svn: 278524
Options used to store a reference to the CommandInterpreter instance
in the base Options class. This made it impossible to parse options
independent of a CommandInterpreter.
This change removes the reference from the base class. Instead, it
modifies the options-parsing-related methods to take an
ExecutionContext pointer, which the options may inspect if they need
to do so.
Closes https://reviews.llvm.org/D23416
Reviewers: clayborg, jingham
llvm-svn: 278440
Resumbitting the commit after fixing the following problems:
- broken unit tests on windows: incorrect gtest usage on my part (TEST vs. TEST_F)
- the new code did not correctly handle the case where we went to interrupt the process, but it
stopped due to a different reason - the interrupt request would remain queued and would
interfere with the following "continue". I also added a unit test for this case.
This reapplies r277156 and r277139.
llvm-svn: 278118
This reverts commit r277139, because:
- broken unittest on windows (likely typo on my part)
- seems to break TestCallThatRestart (needs investigation)
llvm-svn: 277154
SendContinuePacketAndWaitForResponse was huge function with very complex interactions with
several other functions (SendAsyncSignal, SendInterrupt, SendPacket). This meant that making any
changes to how packet sending functions and threads interact was very difficult and error-prone.
This change does not add any functionality yet, it merely paves the way for future changes. In a
follow-up, I plan to add the ability to have multiple query packets in flight (i.e.,
request,request,response,response instead of the usual request,response sequences) and use that
to speed up qModuleInfo packet processing.
Here, I introduce two special kinds of locks: ContinueLock, which is used by the continue thread,
and Lock, which is used by everyone else. ContinueLock (atomically) sends a continue packet, and
blocks any other async threads from accessing the connection. Other threads create an instance of
the Lock object when they want to access the connection. This object, while in scope prevents the
continue from being send. Optionally, it can also interrupt the process to gain access to the
connection for async processing.
Most of the syncrhonization logic is encapsulated within these two classes. Some of it still
had to bleed over into the SendContinuePacketAndWaitForResponse, but the function is still much
more manageable than before -- partly because of most of the work is done in the ContinueLock
class, and partly because I have factored out a lot of the packet processing code separate
functions (this also makes the functionality more easily testable). Most importantly, there is
none of syncrhonization code in the async thread users -- as far as they are concerned, they just
need to declare a Lock object, and they are good to go (SendPacketAndWaitForResponse is now a
very thin wrapper around the NoLock version of the function, whereas previously it had over 100
lines of synchronization code). This will make my follow up changes there easy.
I have written a number of unit tests for the new code and I have ran the test suite on linux and
osx with no regressions.
Subscribers: tberghammer
Differential Revision: https://reviews.llvm.org/D22629
llvm-svn: 277139
This finally removes the use of the Mutex and Condition classes. This is an
intricate patch as the Mutex and Condition classes were tied together.
Furthermore, many places had slightly differing uses of time values. Convert
timeout values to relative everywhere to permit the use of
std::chrono::duration, which is required for the use of
std::condition_variable's timeout. Adjust all Condition and related Mutex
classes over to std::{,recursive_}mutex and std::condition_variable.
This change primarily comes at the cost of breaking the TracingMutex which was
based around the Mutex class. It would be possible to write a wrapper to
provide similar functionality, but that is beyond the scope of this change.
llvm-svn: 277011
debugserver jGetSharedCacheInfo packet instead of reading
the dyld internal data structures directly. This code is
(currently) only used for ios native lldb's - I should really
move this ObjectFileMachO::GetProcessSharedCacheUUID method
somewhere else, it makes less and less sense being in the
file reader.
<rdar://problem/25251243>
llvm-svn: 276369
for the fall (northern hemisphere) 2016 Darwin platforms to learn
about loaded images, instead of reading dyld internal data structures.
These new SPI don't exist on older releases, and new packets are
needed from debugserver to use them (those changes are already committed).
I had to change the minimum deployment target for debugserver in the xcode
project file to macOS 10.10 so that debugserver will use the
[[NSProcessInfo processInfo] operatingSystemVersion]
call in MachProcess::GetOSVersionNumbers to get the operarting system
version # -- this API is only available in macOS 10.10 and newer
("OS X Yosemite", released Oct 2014). If we have many people building
llvm.org lldb on older systems still, we can back off on this for the
llvm.org sources.
There should be no change in behavior with this commit, either to
older darwin systems or newer darwin systems.
For now the new DynamicLoader plugin is never activated - I'm forcing
the old plugin to be used in DynamicLoaderDarwin::UseDYLDSPI.
I'll remove that unconditional use of the old plugin soon, so the
newer plugin is used on the newest Darwin platforms.
<rdar://problem/25251243>
llvm-svn: 276254
review it for consistency, accuracy, and clarity. These changes attempt to
address all of the above while keeping the text relatively terse.
<rdar://problem/24868841>
llvm-svn: 275485
for TestNamespaceLookup.py; didn't see anything obviously wrong so I'll
need to look at this more closely before re-committing. (passed OK on
macOS ;)
llvm-svn: 273531
There's uses of "macosx" that will be more tricky to
change, like in triples (e.g. "x86_64-apple-macosx10.11") -
for now I'm just updating source comments and strings printed
for humans.
llvm-svn: 273524
This patch allows LLDB for AArch64 to watch all bytes, words or double words individually on non 8-byte alligned addresses.
This patch also adds tests to verify this functionality.
Differential revision: http://reviews.llvm.org/D21280
llvm-svn: 272916
Summary:
Because PIE executables have an e_type of llvm::ELF::ET_DYN,
they are not of type eTypeExecutable, and were being removed
when svr4 packets were used.
Reviewers: clayborg, ADodds, tfiala, sas
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20990
llvm-svn: 271899
The error was not getting propagated to the caller, so the higher layers thought the breakpoint
was successfully set & resolved.
I added a testcase, but it assumes 0x0 is not a valid place to set a breakpoint. On most systems
that is true, but if it isn't true of your system, either find another good place and add it to the
test, or x-fail the test.
<rdar://problem/26345962>
llvm-svn: 270014
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
Summary:
MonitorDebugServerProcess went to a lot of effort to make sure its asynchronous invocation does
not cause any mischief, but it was still not race-free. Specifically, in a quick stop-restart
sequence (like the one in TestAddressBreakpoints) the copying of the process shared pointer via
target_sp->GetProcessSP() was racing with the resetting of the pointer in DeleteCurrentProcess,
as they were both accessing the same shared_ptr object.
To avoid this, I simply pass in a weak_ptr to the process when the callback is created. Locking
this pointer is race-free as they are two separate object even though they point to the same
process instance. This also removes the need for the complicated tap-dance around retrieving the
process pointer.
Reviewers: clayborg
Subscribers: tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D20107
llvm-svn: 269281
Summary:
This replaces the C-style "void *" baton of the child process monitoring functions with a more
C++-like API taking a std::function. The motivation for this was that it was very difficult to
handle the ownership of the object passed into the callback function -- each caller ended up
implementing his own way of doing it, some doing it better than others. With the new API, one can
just pass a smart pointer into the callback and all of the lifetime management will be handled
automatically.
This has enabled me to simplify the rather complicated handshake in Host::RunShellCommand. I have
left handling of MonitorDebugServerProcess (my original motivation for this change) to a separate
commit to reduce the scope of this change.
Reviewers: clayborg, zturner, emaste, krytarowski
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20106
llvm-svn: 269205
Summary:
If the remote uses svr4 packets to communicate library info,
the LoadUnload tests will fail, as lldb only used the basename
for modules, causing problems when two modules have the same basename.
Using absolute path as sent by the remote will ensure that lldb
locates the module from the correct directory when there are overlapping
basenames. When debugging a remote process, LoadModuleAtAddress will still
fall back to using basename and module_search_paths, so we don't
need to worry about using absolute paths in this case.
Reviewers: ADodds, jasonmolenda, clayborg, ovyalov
Subscribers: lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D19557
llvm-svn: 267741
Summary:
If the remote uses include features when communicating
xml register info back to lldb, the existing code would reset the
lldb register index at the beginning of each include node.
This would lead to multiple registers having the same lldb register index.
Since the lldb register numbers should be contiguous and unique,
maintain them accross the parsing of all of the xml feature nodes.
Reviewers: jingham, jasonmolenda, clayborg
Subscribers: lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D19303
llvm-svn: 267468
Summary:
When we receive an svr4 packet from the remote, we check for new modules
and add them to the list of images in the target. However, we did not
do the same for modules which have been removed.
This was causing TestLoadUnload to fail when using ds2, which uses
svr4 packets to communicate all library info on Linux. This patch fixes
the failing test.
Reviewers: zturner, tfiala, ADodds
Subscribers: lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D19230
llvm-svn: 267467
In turns out this does make a functional change, in case when the inferior hits an int3 that was
not placed by the debugger. Backing out for now.
llvm-svn: 265647
Summary:
SetThreadStopInfo was checking for a breakpoint at the current PC several times. This merges the
identical code into a separate function. I've left one breakpoint check alone, as it was doing
more complicated stuff, and it did not see a way to merge that without making the interface
complicated. NFC.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18819
llvm-svn: 265560
Summary:
This resolves a similar problem as D16720 (which handled the case when we single-step onto a
breakpoint), but this one deals with involutary stops: when we stop a thread (e.g. because
another thread has hit a breakpont and we are doing a full stop), we can end up stopping it right
before it executes a breakpoint instruction. In this case, the stop reason will be empty, but we
will still step over the breakpoint when do the next resume, thereby missing a breakpoint hit.
I have observed this happening in TestConcurrentEvents, but I have no idea how to reproduce this
behavior more reliably.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18692
llvm-svn: 265525
Summary:
The logic to read modules from memory was added to LoadModuleAtAddress
in the dynamic loader, but not in process gdb remote. This means that when
the remote uses svr4 packets to give library info, libraries only present
on the remote will not be loaded.
This patch therefore involves some code duplication from LoadModuleAtAddress
in the dynamic loader, but removing this would require some amount of code
refactoring.
Reviewers: ADodds, tberghammer, tfiala, deepak2427, ted
Subscribers: tfiala, lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D18531
Change by Francis Ricci <fjricci@fb.com>
llvm-svn: 265418
rnb_err_t
RNBRemote::HandlePacket_stop_process (const char *p)
{
if (!DNBProcessInterrupt(m_ctx.ProcessID()))
HandlePacket_last_signal (NULL);
return rnb_success;
}
In the call to DNBProcessInterrupt we did:
nub_bool_t
DNBProcessInterrupt(nub_process_t pid)
{
MachProcessSP procSP;
if (GetProcessSP (pid, procSP))
return procSP->Interrupt();
return false;
}
This would always return false. It would cause HandlePacket_stop_process to always call "HandlePacket_last_signal (NULL);" which would send an extra stop reply packet _if_ the process is stopped. On a machine with enough cores, it would call DNBProcessInterrupt(...) and then HandlePacket_last_signal(NULL) so quickly that it will never send out an extra stop reply packet. But if the machine is slow enough or doesn't have enough cores, it could cause the call to HandlePacket_last_signal() to actually succeed and send an extra stop reply packet. This would cause problems up in GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse() where it would get the first stop reply packet and then possibly return or execute an async packet. If it returned, then the next packet that was sent will get the second stop reply as its response. If it executes an async packet, the async packet will get the wrong response.
To fix this I did the following:
1 - in debugserver, I fixed "bool MachProcess::Interrupt()" to return true if it sends the signal so we avoid sending the stop reply twice on slower machines
2 - Added a log line to RNBRemote::HandlePacket_stop_process() to say if we ever send an extra stop reply so we will see this in the darwin console output if this does happen
3 - Added response validators to StringExtractorGDBRemote so that we can verify some responses to some packets.
4 - Added validators to packets that often follow stop reply packets like the "m" packet for memory reads, JSON packets since "jThreadsInfo" is often sent immediately following a stop reply.
5 - Modified GDBRemoteCommunicationClient::SendPacketAndWaitForResponseNoLock() to validate responses. Any "StringExtractorGDBRemote &response" that contains a valid response verifier will verify the response and keep looking for correct responses up to 3 times. This will help us get back on track if we do get extra stop replies. If a StringExtractorGDBRemote does not have a response validator, it will accept any packet in response.
6 - In GDBRemoteCommunicationClient::SendPacketAndWaitForResponse we copy the response validator from the "response" argument over into m_async_response so that if we send the packet by interrupting the running process, we can validate the response we actually get in GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse()
7 - Modified GDBRemoteCommunicationClient::SendContinuePacketAndWaitForResponse() to always check for an extra stop reply packet for 100ms when the process is interrupted. We were already doing this because we might interrupt a process with a \x03 packet, yet the process was in the process of stopping due to another reason. This race condition could cause an extra stop reply packet because the GDB remote protocol says if a \x03 packet is sent while the process is stopped, we should send a stop reply packet back. Now we always check for an extra stop reply packet when we manually interrupt a process.
The issue was showing up when our IDE would attempt to set a breakpoint while the process is running and this would happen:
--> \x03
<-- $T<stop reply 1>
--> z0,AAAAA,BB (set breakpoint)
<-- $T<stop reply 1> (incorrect extra stop reply packet)
--> c
<-- OK (response from z0 packet)
Now all packet traffic was off by one response. Since we now have a validator on the response for "z" packets, we do this:
--> \x03
<-- $T<stop reply 1>
--> z0,AAAAA,BB (set breakpoint)
<-- $T<stop reply 1> (Ignore this because this can't be the response to z0 packets)
<-- OK -- (we are back on track as this is a valid response to z0)
...
As time goes on we should add more packet validators.
<rdar://problem/22859505>
llvm-svn: 265086
to each other. This should remove some infrequent teardown crashes when the
listener is not the debugger's listener.
Processes now need to take a ListenerSP, not a Listener&.
This required changing over the Process plugin class constructors to take a ListenerSP, instead
of a Listener&. Other than that there should be no functional change.
<rdar://problem/24580184> CrashTracer: [USER] Xcode at …ework: lldb_private::Listener::BroadcasterWillDestruct + 39
llvm-svn: 262863
on attach uses the architecture it has figured out, rather than the Target's
architecture, which may not have been updated to the correct value yet.
<rdar://problem/24632895>
llvm-svn: 261279
Summary:
r259344 introduced a bug, where we fail to perform a single step, when the instruction we are
stepping onto contains a breakpoint which is not valid for this thread. This fixes the problem
and add a test case.
Reviewers: tberghammer, emaste
Subscribers: abhishek.aggarwal, lldb-commits, emaste
Differential Revision: http://reviews.llvm.org/D16767
llvm-svn: 259488
Summary:
- The patch solves Bug 23478 and Bug 19311. Resolving
Bug 23478 also resolves Bug 23039.
Correct ThreadStopInfo is set for Linux and FreeBSD
platforms.
- Summary:
When a trace event is reported, we need to check
whether the trace event lands at a breakpoint site.
If it lands at a breakpoint site then set the thread's
StopInfo with the reason 'breakpoint'. Else, set the reason
to be 'Trace'.
Change-Id: I0af9765e782fd74bc0cead41548486009f8abb87
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: jingham, emaste, lldb-commits, clayborg, ovyalov
Subscribers: emaste
Differential Revision: http://reviews.llvm.org/D16720
llvm-svn: 259344
Summary:
Allows the remote to enumerate the link map when adding and removing
shared libraries, so that lldb doesn't need to read it manually from
the remote's memory.
This provides very large speedups (on the order of 50%) in total
startup time when using the ds2 remote on android or Tizen devices.
Reviewers: ADodds, tberghammer, tfiala
Subscribers: tberghammer, sas, danalbert, llvm-commits, srhines
Differential Revision: http://reviews.llvm.org/D16004
Change by Francis Ricci <fjricci@fb.com>
llvm-svn: 257502
at each public stop to improve performance a bit. Most of the
information lldb needed was already in the jThreadsInfo response;
complete that information and catch a few cases where we could still
fall back to getting the information via discrete memory reads.
debugserver adds 'associated_with_dispatch_queue' and 'dispatch_queue_t
keys to the jThreadsInfo response for all the threads. lldb needs the
dispatch_queue_t value. And associated_with_dispatch_queue helps to
identify which threads definitively don't have any queue information so
lldb doesn't try to do memory reads to get that information just because
it was absent in the jThreadsInfo response.
Remove the queue information from the questionmark (T) packet. We'll
get the information for all threads via the jThreadsInfo response -
sending the information for the stopping thread (on all the private
stops, plus the less frequent public stop) was unnecessary information
being sent over the wire.
SystemRuntimeMacOSX will try to get information about queues by asking
the Threads for them, instead of reading memory.
ProcessGDBRemote changes to recognize the new keys being sent in the
jThreadsInfo response. Changes to ThreadGDBRemote to track the new
information. Also, when a thread is marked as definitively not
associated with a libdispatch queue, don't fall back to the system
runtime to try memory reads to find the queue name / kind / ID etc.
<rdar://problem/23309359>
llvm-svn: 257453
"qserial" to "qserialnum" because "qserial" looks a lot like the
queue type (either 'serial' or 'concurrent') and can be confusing
to read through. debugserver passes these up either in the questionmark
("T") packet, or in the response to the jThreadsInfo packet.
llvm-svn: 257121
(There are changes in the copies of these four files in the FreeBSD base
system, and I've changed these ones to reduce gratuitous diffs in future
imports.)
llvm-svn: 256723
"thread-pcs" key is added to the T (questionmark) packet in
gdb-remote protocol so that lldb doesn't need to query the
pc values of every thread before it resumes a process.
The only odd part with this is that I'm sending the pc
values in big endian order, so we need to know the endianness
of the remote process before we can use them. All other
register values in gdb-remote protocol are sent in native-endian
format so this requirement doesn't exist. This addition is a
performance enhancement -- lldb will fall back to querying the
pc of each thread individually if it needs to -- so when
we don't have the byte order for the process yet, we don't
use these values. Practically speaking, the only way I've
been able to elicit this condition is for the first
T packet when we attach to a process.
<rdar://problem/21963031>
llvm-svn: 255942
Summary:
Since this is within the lldb namespace, the compiler tries to
export a symbol for it. Unfortunately, since it is inlined, the
symbol is hidden and this results in a mess of warnings when
building on OS X with cmake.
Moving it to the lldb_private namespace eliminates that problem.
Reviewers: clayborg
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D14417
llvm-svn: 252396
This allows open source MacOSX clients to not have to build debugserver and the current LLDB can find debugserver inside the selected Xcode.app on your system.
<rdar://problem/23167253>
llvm-svn: 250735
Most platforms have "/dev/null". Windows has "nul". Instead of
hardcoding the string /dev/null at various places, make a constant
that contains the correct value depending on the platform, and use
that everywhere instead.
llvm-svn: 250331
Summary:
This commit adds support for binary memory reads ($x) to lldb-server. It also removes the "0x"
prefix from the $x client packet, to make it more compatible with the old $m packet. This allows
us to use almost the same code for handling both packet types. I have verified that debugserver
correctly handles $x packets even without the leading "0x". I have added a test which verifies
that the stub returns the same memory contents for both kinds of memory reads ($x and $m).
Reviewers: tberghammer, jasonmolenda
Subscribers: iancottrell, lldb-commits
Differential Revision: http://reviews.llvm.org/D13695
llvm-svn: 250295
The Go runtime schedules user level threads (goroutines) across real threads.
This adds an OS plugin to create memory threads for goroutines.
It supports the 1.4 and 1.5 go runtime.
Differential Revision: http://reviews.llvm.org/D5871
llvm-svn: 247852
"gcc" register numbers are now correctly referred to as "ehframe"
register numbers. In almost all cases, ehframe and dwarf register
numbers are identical (the one exception is i386 darwin where ehframe
regnums were incorrect).
The old "gdb" register numbers, which I incorrectly thought were
stabs register numbers, are now referred to as "Process Plugin"
register numbers. This is the register numbering scheme that the
remote process controller stub (lldb-server, gdbserver, core file
support, kdp server, remote jtag devices, etc) uses to refer to the
registers. The process plugin register numbers may not be contiguous
- there are remote jtag devices that have gaps in their register
numbering schemes.
I removed all of the enums for "gdb" register numbers that we had
in lldb - these were meaningless - and I put LLDB_INVALID_REGNUM
in all of the register tables for the Process Plugin regnum slot.
This change is almost entirely mechnical; the one actual change in
here is to ProcessGDBRemote.cpp's ParseRegisters() which parses the
qXfer:features:read:target.xml response. As it parses register
definitions from the xml, it will assign sequential numbers as the
eRegisterKindLLDB numbers (the lldb register numberings must be
sequential, without any gaps) and if the xml file specifies register
numbers, those will be used as the eRegisterKindProcessPlugin
register numbers (and those may have gaps). A J-Link jtag device's
target.xml does contain a gap in register numbers, and it only
specifies the register numbers for the registers after that gap.
The device supports many different ARM boards and probably selects
different part of its register file as appropriate.
http://reviews.llvm.org/D12791
<rdar://problem/22623262>
llvm-svn: 247741
qXfer:features:read:target.xml packet, or via the
plugin.process.gdb-remote.target-definition-file setting, if the
register definition doesn't give us eh_frame or DWARF register
numbers for that register, try to get that information from the ABI
plugin.
The DWARF/eh_frame register numbers are defined in the ABI
standardization documents - so getting this from the ABI plugin is
reasonable. There's little value in having the remote stub inform
us of this generic information, as long as we can all agree on the
names of the registers.
There's some additional information we could get from the ABI. For
instance, on ABIs where function arguments are passed in registers,
lldb defines alternate names like "arg1", "arg2", "arg3" for these
registers so they can be referred to that way by the user. We could
get this from the ABI if the remote stub doesn't provide that. That
may be something worth doing in the future - but for now, I'm keeping
this a little more minimal.
Thinking about this, what we want/need from the remote stub at a
minimum are:
1. The names of the register
2. The number that the stub will use to refer to the register with
the p/P packets and in the ? response packets (T/S) where
expedited register values are provided
3. The size of the register in bytes
(nice to have, to remove any doubt)
4. The offset of the register in the g/G packet if we're going to
use that for reading/writing registers.
debugserver traditionally provides a lot more information in
addition to this via the qRegisterInfo packet, and debugserver
augments its response to the qXfer:features:read:target.xml
query to include this information. Including:
DWARF regnum, eh_frame regnum, stabs regnum, encoding (ieee754,
Uint, Vector, Sint), format (hex, unsigned, pointer, vectorof*,
float), registers that should be marked as invalid if this
register is modified, and registers that contain this register.
We might want to get all of this from the ABI - I'm not convinced
that it makes sense for the remote stub to provide any of these
details, as long as the ABI and remote stub can agree on register
names.
Anyway, start with eh_frame and DWARF coming from the ABI if
they're not provided by the remote stub. We can look at doing
more in the future.
<rdar://problem/22566585>
llvm-svn: 247121
Summary:
There was a race condition in the AsyncThread, where we would end up sending a vAttach
notification to the thread before it got a chance set up its listener (this can be reproduced by
adding a sleep() at the very beginning of ProcessGDBRemote::AsyncThread()). This event would then
get lost and we LLDB would deadlock. I fix this by setting up the listener early on, in the
ProcessGDBRemote constructor.
This should improve the stability of all attach tests. For now, I am removing XTIMEOUT from
TestAttachResume, and will watch the buildbots for signs of trouble.
Reviewers: clayborg, ovyalov
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12552
llvm-svn: 246756
Summary:
When a windows remote stops because of a DLL load/unload, the debug server
sends a stop reply packet that contains a `library` key with any value (usually
just `library:1`). This indicates to the debugger that a library has been
loaded or unloaded and that the list of libraries should be refreshed (usually
with `qXfer:libraries:read`).
This change just triggers a call to `LoadModules()` which in turns will send a
remote library read command when a stop reply that requests it is received.
Reviewers: clayborg, zturner, tberghammer
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12218
llvm-svn: 245708
This was breaking disassembly for arm machines that we force to be
thumb mode all the time because we were only checking for llvm::Triple::arm.
i.e.
armv6m (ARM Cortex-M0)
armv7m (ARM Cortex-M3)
armv7em (ARM Cortex-M4)
<rdar://problem/22334522>
llvm-svn: 245645
Summary:
This is useful when dealing with Windows remote that use only the
qXfer:libraries command which returns absolute base addresses, as
opposed to qXfer:libraries-svr4 which returns relative offsets for
module bases.
Reviewers: clayborg, zturner, ADodds
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12204
llvm-svn: 245625
Summary: Size specifier should come after `%` not before.
Reviewers: clayborg, ADodds
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D12203
llvm-svn: 245608
to the user. e.g. specified via the
plugin.process.gdb-remote.target-definition-file
setting. Currently we silently ignore the target definition if
there is a parse error.
llvm-svn: 245536
for eh_frame and stabs register numberings. This is not
complete but it's a step in the right direction. It's almost
entirely mechanical.
lldb informally uses "gcc register numbering" to mean eh_frame.
Why? Probably because there's a notorious bug with gcc on i386
darwin where the register numbers in eh_frame were incorrect.
In all other cases, eh_frame register numbering is identical to
dwarf.
lldb informally uses "gdb register numbering" to mean stabs.
There are no official definitions of stabs register numbers
for different architectures, so the implementations of gdb
and gcc are the de facto reference source.
There were some incorrect uses of these register number types
in lldb already. I fixed the ones that I saw as I made
this change.
This commit changes all references to "gcc" and "gdb" register
numbers in lldb to "eh_frame" and "stabs" to make it clear
what is actually being represented.
lldb cannot parse the stabs debug format, and given that no
one is using stabs any more, it is unlikely that it ever will.
A more comprehensive cleanup would remove the stabs register
numbers altogether - it's unnecessary cruft / complication to
all of our register structures.
In ProcessGDBRemote, when we get register definitions from
the gdb-remote stub, we expect to see "gcc:" (qRegisterInfo)
or "gcc_regnum" (qXfer:features:read: packet to get xml payload).
This patch changes ProcessGDBRemote to also accept "ehframe:"
and "ehframe_regnum" from these remotes.
I did not change GDBRemoteCommunicationServerLLGS or debugserver
to send these new packets. I don't know what kind of interoperability
constraints we might be working under. At some point in the future
we should transition to using the more descriptive names.
Throughout lldb we're still using enum names like "gcc_r0" and "gdb_r0",
for eh_frame and stabs register numberings. These should be cleaned
up eventually too.
The sources link cleanly on macosx native with xcode build. I
don't think we'll see problems on other platforms but please let
me know if I broke anyone.
llvm-svn: 245141
SUMMARY:
The patch supports TAAwatch:addr packet. The patch also sets m_watchpoints_trigger_after_instruction
to eLazyBoolNo when qHostInfo or qWatchpointSupportInfo is not supported by the target.
Reviewers: jingham, clayborg
Subscribers: nitesh.jain, mohit.bhakkad, sagar, bhushan and lldb-commits
Differential Revision: http://reviews.llvm.org/D11747
llvm-svn: 244865
SUMMARY:
Last 3bits of the watchpoint address are masked by the kernel. For example, n is
at 0x120010d00 and m is 0x120010d04. When a watchpoint is set at m, then watch
exception is generated even when n is read/written. To handle this case, instruction
at PC is emulated to find the base address of the load/store instruction. This address
is then appended to the description of the stop-info packet. Client then reads this
information to check whether the user has set a watchpoint on this address.
Reviewers: jingham, clayborg
Subscribers: nitesh.jain, mohit.bhakkad, sagar, bhushan and lldb-commits
Differential Revision: http://reviews.llvm.org/D11672
llvm-svn: 244864
system, make a couple of additional checks to see if the
attach was denied via the System Integrity Protection that
is new in Mac OS X 10.11. If so, return a special E87
error code to indicate this to lldb.
Up in lldb, if we receive the E87 error code, be specific
about why the attach failed.
Also detect the more common case of general attach failure
and print a better error message than "lost connection".
I believe this code will all build on Mac OS X 10.10 systems.
It may not compile or run on earlier versions of the OS.
None of this should build on other non-darwin systems.
llvm-svn: 243511
SUMMARY:
This patch fixes couple of issues:
1. A thread tries to lock a mutex which is already locked.
2. Updating a thread list before the stop packet is parsed so that it can get a valid thread id and allows to set the stop info correctly.
Reviewers: clayborg
Subscribers: mohit.bhakkad, sagar, jaydeep, lldb-commits
Differential Revision: http://reviews.llvm.org/D11449
llvm-svn: 243091
Changed the "jthreads" key/value in the stop reply packets to be "jstopinfo". This JSON only contains threads with valid stop reasons and allows us not to have to ask about other threads via qThreadStopInfo when we are stepping. The "jstopinfo" only gets sent if there are more than one thread since the stop reply packet contains all the info needed for a single thread.
Added a Process::WillPublicStop() in case process subclasses want to do any extra gathering for public stops. For ProcessGDBRemote, we end up sending a jThreadsInfo packet to gather all expedited registers, expedited memory and MacOSX queue information. We only do this for public stops to minimize the packets we send when we have multiple private stops. Multiple private stops happen when a source level single step, step into or step out run the process multiple times while implementing the stepping, and none of these private stops make it out to the UI via notifications because they are private stops.
llvm-svn: 242593
Summary:
This commit adds initial support for the jThreadsInfo packet to lldb-server. The current
implementation does not expedite inferior memory. I have also added a description of the new
packet to our protocol documentation (mostly taken from Greg's earlier commit message).
Reviewers: clayborg, ovyalov, tberghammer
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11187
llvm-svn: 242402
This allows stepping operations that don't ever do a public stop to get all the info they need without having to send a jThreadsInfo packet since those tend to be large.
This patch will be followed by a patch that will detect when we do a public stop, and when that happens we will send a jThreadsInfo packet at that time to get all expedited registers and memory.
llvm-svn: 242352
Summary:
- Consolidate Unix signals selection in UnixSignals.
- Make Unix signals available from platform.
- Add jSignalsInfo packet to retrieve Unix signals from remote platform.
- Get a copy of the platform signal for each remote process.
- Update SB API for signals.
- Update signal utility in test suite.
Reviewers: ovyalov, clayborg
Subscribers: chaoren, jingham, labath, emaste, tberghammer, lldb-commits
Differential Revision: http://reviews.llvm.org/D11094
llvm-svn: 242101
jGetLoadedDynamicLibrariesInfos. This packet is similar to
qXfer:libraries:read except that lldb supplies the number of solibs
that should be reported about, and the start address for the list
of them. At the initial process launch we'll read the full list
of solibs linked by the process -- at this point we could be using
qXfer:libraries:read -- but on subsequence solib-loaded notifications,
we'll be fetching a smaller number of solibs, often only one or two.
A typical Mac/iOS GUI app may have a couple hundred different
solibs loaded - doing all of the loads via memory reads takes
a couple of megabytes of traffic between lldb and debugserver.
Having debugserver summarize the load addresses of all the solibs
and sending it in JSON requires a couple of hundred kilobytes
of traffic. It's a significant performance improvement when
communicating over a slower channel.
This patch leaves all of the logic for loading the libraries
in DynamicLoaderMacOSXDYLD -- it only call over ot ProcesGDBRemote
to get the JSON result.
If the jGetLoadedDynamicLibrariesInfos packet is not implemented,
the normal technique of using memory read packets to get all of
the details from the target will be used.
<rdar://problem/21007465>
llvm-svn: 241964
Summary:
This is used on non-unix platforms, where qXfer:libraries-svr4:read
doesn't make sense. Windows uses that for instance.
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11036
llvm-svn: 241712
Make the python target definition file have highest priority so that we can set
the remote stub breakpoint pc offset using it.
Reviewers: clayborg
Subscribers: ted, deepak2427, lldb-commits
Differential revision: http://reviews.llvm.org/D10775
llvm-svn: 241063
- Avoid sending the qfThreadInfo, qsThreadInfo packets if we have a stop reply packet with the threads already (save 2 round trip packets)
- Include the qname, qserial and qkind in the JSON info
- Report the qname, qserial and qkind to the thread so it can cache it to avoid many packets on MacOSX and iOS
- Don't clear all discoverable settings when we exec, just the ones we need to saves 1-5 packets for each exec.
llvm-svn: 240988
There are a couple of bugs in the XML register info handling which this patch fixes:
+ conflicting variable names in lambda, both capture list and parameters contains a variable called 'name'.
+ prev_reg_num, which sets the register number, should be incremented after each register is processed.
+ Windows errors regarding empty strings and the 'xi:' prefix disappearing from 'xi:include' node name.
Reviewers: clayborg
Subscribers: lldb-commits, deepak2427
Differential Revision: http://reviews.llvm.org/D10731
llvm-svn: 240768
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
A "qSymbol::" is sent when shared libraries have been loaded by hooking into the Process::ModulesDidLoad() function from within ProcessGDBRemote. This function was made virtual so that the ProcessGDBRemote version is called, which then first calls the Process::ModulesDidLoad(), and then it queries for any symbol lookups that the remote GDB server might want to do.
This allows debugserver to request the "dispatch_queue_offsets" symbol so that it can read the queue name, queue kind and queue serial number and include this data as part of the stop reply packet. Previously each thread would have to do 3 memory reads in order to read the queue name.
This is part of reducing the number of packets that are sent between LLDB and the remote GDB server.
<rdar://problem/21494354>
llvm-svn: 240466
This patch adds a listener to the AynscThread in ProcessGDBRemote, specifically for dealing with any async notification packets.
From the broadcast our listener receives we can process the notify packet from the event data. A handler function then sets the thread stop info from this packet, and updates lldb by setting the process private state to stopped. Allowing the async thread to go back to sleep and getting the main thread to handle the implications of a state change.
When sending a vCont in nonstop mode we also get a different reply from all-stop mode, an OK response as opposed to a stop reply. So a condition is added to handle this and set the process state without the stop-reply data.
Reviewers: clayborg
Subscribers: lldb-commits, labath, ted, aidan.dodds, deepak2427
Differential Revision: http://reviews.llvm.org/D10544
llvm-svn: 240397
We have been working on reducing the packet count that is sent between LLDB and the debugserver on MacOSX and iOS. Our approach to this was to reduce the packets required when debugging multiple threads. We currently make one qThreadStopInfoXXXX call (where XXXX is the thread ID in hex) per thread except the thread that stopped with a stop reply packet. In order to implement multiple thread infos in a single reply, we need to use structured data, which means JSON. The new jThreadsInfo packet will attempt to retrieve all thread infos in a single packet. The data is very similar to the stop reply packets, but packaged in JSON and uses JSON arrays where applicable. The JSON output looks like:
[
{ "tid":1580681,
"metype":6,
"medata":[2,0],
"reason":"exception",
"qaddr":140735118423168,
"registers": {
"0":"8000000000000000",
"1":"0000000000000000",
"2":"20fabf5fff7f0000",
"3":"e8f8bf5fff7f0000",
"4":"0100000000000000",
"5":"d8f8bf5fff7f0000",
"6":"b0f8bf5fff7f0000",
"7":"20f4bf5fff7f0000",
"8":"8000000000000000",
"9":"61a8db78a61500db",
"10":"3200000000000000",
"11":"4602000000000000",
"12":"0000000000000000",
"13":"0000000000000000",
"14":"0000000000000000",
"15":"0000000000000000",
"16":"960b000001000000",
"17":"0202000000000000",
"18":"2b00000000000000",
"19":"0000000000000000",
"20":"0000000000000000"},
"memory":[
{"address":140734799804592,"bytes":"c8f8bf5fff7f0000c9a59e8cff7f0000"},
{"address":140734799804616,"bytes":"00000000000000000100000000000000"}
]
}
]
It contains an array of dicitionaries with all of the key value pairs that are normally in the stop reply packet. Including the expedited registers. Notice that is also contains expedited memory in the "memory" key. Any values in this memory will get included in a new L1 cache in lldb_private::Process where if a memory read request is made and that memory request fits into one of the L1 memory cache blocks, it will use that memory data. If a memory request fails in the L1 cache, it will fall back to the L2 cache which is the same block sized caching we were using before these changes. This allows a process to expedite memory that you are likely to use and it reduces packet count. On MacOSX with debugserver, we expedite the frame pointer backchain for a thread (up to 256 entries) by reading 2 pointers worth of bytes at the frame pointer (for the previous FP and PC), and follow the backchain. Most backtraces on MacOSX and iOS now don't require us to read any memory!
We will try these packets out and if successful, we should port these to lldb-server in the near future.
<rdar://problem/21494354>
llvm-svn: 240354
In order to support asynchronous notifications for non-stop mode this patch adds a packet read thread. This is done by implementing AppendBytesToCache() from the communications class, which continually reads packets into a packet queue. To initialize this thread StartReadThread() must be called by the client, so since llgs and platform tools use the GBDRemoteCommunicatos code they must also call this function as well as ProcessGDBRemote.
When the read thread detects an async notify packet it broadcasts this event, where the matching listener will be added in the next non-stop patch.
Packets are now accessed by calling ReadPacket() which pops a packet from the queue, instead of using WaitForPacketWithTimeoutMicroSecondsNoLock()
Reviewers: vharron, clayborg
Subscribers: lldb-commits, labath, ted, domipheus, deepak2427
Differential Revision: http://reviews.llvm.org/D10085
llvm-svn: 239824
Summary:
This should solve the issue of sending denormalized paths over gdb-remote
if we stick to GetPath(false) in GDBRemoteCommunicationClient, and let the
server handle any denormalization.
Reviewers: ovyalov, zturner, vharron, clayborg
Reviewed By: clayborg
Subscribers: tberghammer, emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D9728
llvm-svn: 238604
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
Summary:
Previously, we reported inferior receiving SIGSEGV (or SIGILL, SIGFPE, SIGBUS) as an "exception"
to LLDB, presumably to match OSX behaviour. Beside the fact that we were basically lying to the
user, this was also causing problems with inferiors which handle SIGSEGV by themselves, since
LLDB was unable to reinject this signal back into the inferior.
This commit changes LLGS to report SIGSEGV as a signal. This has necessitated some changes in the
test-suite, which had previously used eStopReasonException to locate threads that crashed. Now it
uses platform-specific logic, which in the case of linux searches for eStopReasonSignaled with
signal=SIGSEGV.
I have also added the ability to set the description of StopInfoUnixSignal using the description
field of the gdb-remote packet. The linux stub uses this to display additional information about
the segfault (invalid address, address access protected, etc.).
Test Plan: All tests pass on linux and osx.
Reviewers: ovyalov, clayborg, emaste
Subscribers: emaste, lldb-commits
Differential Revision: http://reviews.llvm.org/D10057
llvm-svn: 238549
qEcho:%s
where '%s' is any valid string. The response to this packet is the exact packet itself with no changes, just reply with what you received!
This will help us to recover from packets timing out much more gracefully. Currently if a packet times out, LLDB quickly will hose up the debug session. For example, if we send a "abc" packet and we expect "ABC" back in response, but the "abc" command takes longer than the current timeout value this will happen:
--> "abc"
<-- <<<error: timeout>>>
Now we want to send "def" and get "DEF" back:
--> "def"
<-- "ABC"
We got the wrong response for the "def" packet because we didn't sync up with the server to clear any current responses from previously issues commands.
The fix is to modify GDBRemoteCommunication::WaitForPacketWithTimeoutMicroSecondsNoLock() so that when it gets a timeout, it syncs itself up with the client by sending a "qEcho:%u" where %u is an increasing integer, one for each time we timeout. We then wait for 3 timeout periods to sync back up. So the above "abc" session would look like:
--> "abc"
<-- <<<error: timeout>>> 1 second
--> "qEcho:1"
<-- <<<error: timeout>>> 1 second
<-- <<<error: timeout>>> 1 second
<-- "abc"
<-- "qEcho:1"
The first timeout is from trying to get the response, then we know we timed out and we send the "qEcho:1" packet and wait for 3 timeout periods to get back in sync knowing that we might actually get the response for the "abc" packet in the mean time...
In this case we would actually succeed in getting the response for "abc". But lets say the remote GDB server is deadlocked and will never response, it would look like:
--> "abc"
<-- <<<error: timeout>>> 1 second
--> "qEcho:1"
<-- <<<error: timeout>>> 1 second
<-- <<<error: timeout>>> 1 second
<-- <<<error: timeout>>> 1 second
We then disconnect and say we lost connection.
We might also have a bad GDB server that just dropped the "abc" packet on the floor. We can still recover in this case and it would look like:
--> "abc"
<-- <<<error: timeout>>> 1 second
--> "qEcho:1"
<-- "qEcho:1"
Then we know our remote GDB server is still alive and well, and it just dropped the "abc" response on the floor and we can continue to debug.
<rdar://problem/21082939>
llvm-svn: 238530
In ProcessGDBRemote we currently have a single packet, m_last_stop_packet, used to set the thread stop info.
However in non-stop mode we can receive several stop reply packets in a sequence for different threads. As a result we need to use a container to hold them before they are processed.
This patch also changes the return type of CheckPacket() so we can detect async notification packets.
Reviewers: clayborg
Subscribers: labath, ted, deepak2427, lldb-commits
Differential Revision: http://reviews.llvm.org/D9853
llvm-svn: 238323
We know have on API we should use for all XML within LLDB in XML.h. This API will be easy back the XML parsing by different libraries in case libxml2 doesn't work on all platforms. It also allows the only place for #ifdef ...XML... to be in XML.h and XML.cpp. The API is designed so it will still compile with or without XML support and there is a static function "bool XMLDocument::XMLEnabled()" that can be called to see if XML is currently supported. All APIs will return errors, false, or nothing when XML isn't enabled.
Converted all locations that used XML over to using the host XML implementation.
Added target.xml support to debugserver. Extended the XML register format to work for LLDB by including extra attributes and elements where needed. This allows the target.xml to replace the qRegisterInfo packets and allows us to fetch all register info in a single packet.
<rdar://problem/21090173>
llvm-svn: 238224
The main issue was the Communication::Disconnect() was calling its Connection::Disconnect() but this wouldn't release the pipes that the ConnectionFileDescriptor was using. We also have someone that is holding a strong reference to the Process so that when you re-run, target replaces its m_process_sp, but it doesn't get destructed because someone has a strong reference to it. I need to track that down. But, even if we have a strong reference to the a process that is outstanding, we need to call Process::Finalize() to have it release as much of its resources as possible to avoid memory bloat.
Removed the ProcessGDBRemote::SetExitStatus() override and replaced it with ProcessGDBRemote::DidExit().
Now we aren't leaking file descriptors and the stand alone test suite should run much better.
llvm-svn: 238089
r237411 exposed the following issue: ProcessGDBRemote used the description field in the
stop-reply to set the description of the StopInfo. In the case of watchpoints, the packet
description contains the raw address that got hit, which is not exactly the information we want
to display to the user as the stop info. Therefore, I have changed the code to use the packet
description only if the StopInfo does not already have a description. This makes the behavior
equivalent to the pre-r237411 behavior as then the SetDecription call got ignored for
watchpoints.
llvm-svn: 237436
There were two versions of DoAttachToprocessWithId. One that takes
a pid_t, and the other which takes a pid_t and a ProcessAttachInfo.
There were no callers of the former version, and all of the
implementations of this version were simply forwarding calls to
one version or the other.
llvm-svn: 237281
Summary:
This patch is the beginnings of support for Non-stop mode in the remote protocol. Letting a user examine stopped threads, while other threads execute freely.
Non-stop mode is enabled using the setting target.non-stop-mode, which sends a QNonStop packet when establishing the remote connection.
Changes are also made to treat the '?' stop reply packet differently in non-stop mode, according to spec https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Non_002dStop.html#Remote-Non_002dStop.
A setting for querying the remote for default thread on setup is also included.
Handling of '%' async notification packets will be added next.
Reviewers: clayborg
Subscribers: lldb-commits, ADodds, ted, deepak2427
Differential Revision: http://reviews.llvm.org/D9656
llvm-svn: 237239
Removed some unused variables, added some consts, changed some casts
to const_cast. I don't think any of these changes are very
controversial.
Differential Revision: http://reviews.llvm.org/D9674
llvm-svn: 237218
the changes in r233255/r233258. Normally if lldb attaches to
a running process, when we call Process::Destroy, we want to detach
from the process. If lldb launched the process itself, ::Destroy
should kill it.
However, if we attach to a process and the driver calls SBProcess::Kill()
(which calls Destroy), we need to kill it even if we didn't launch it
originally.
The force_kill param allows for the SBProcess::Kill method to force the
behavior of Destroy.
<rdar://problem/20424439>
llvm-svn: 235158
Also add "#if defined( LIBXML2_DEFINED )" around code that already used libxml2 in SymbolVendorMacOSX.cpp.
Cleaned up some warnings in ProcessGDBRemote.cpp.
llvm-svn: 235144
Previously the remote module sepcification was fetched only from the
remote platform. With this CL if we have a remote process then we ask it
if it have any information from a given module. It is required because
on android the dynamic linker only reports the name of the SO file and
the platform can't always find it without a full path (the process can
do it based on /proc/<pid>/maps).
Differential revision: http://reviews.llvm.org/D8547
llvm-svn: 233061
This removes ScriptInterpreterObject from the codebase completely.
Places that used to rely on ScriptInterpreterObject now use
StructuredData::Object and its derived classes. To support this,
a new type of StructuredData object is introduced, called
StructuredData::Generic, which stores a void*. Internally within
the python library, StructuredPythonObject subclasses this
StructuredData::Generic class so that it can addref and decref
the python object on construction and destruction.
Additionally, all of the classes in PythonDataObjects.h such
as PythonList, PythonDictionary, etc now provide a method to
create an instance of the corresponding StructuredData type. For
example, there is PythonDictionary::CreateStructuredDictionary.
To eliminate dependencies on PythonDataObjects for external
callers, all ScriptInterpreter methods now return only
StructuredData classes
The rest of the changes in this CL are focused on fixing up
users of PythonDataObjects classes to use the new StructuredData
classes.
llvm-svn: 232534
Previously it was fetched only if the architecture isn't valid, but the
architecture can be valid without containing all information about the
current target (e.g. missing os).
Differential revision: http://reviews.llvm.org/D8057
llvm-svn: 232153
This was previously initialized by ProcessGDBRemote::Initialize but lldb-server does not contain ProcessGDBRemote anymore so this needs to be initialized directly.
Differential Revision: http://reviews.llvm.org/D8186
llvm-svn: 231966
Summary:
ProcessGDBRemote::AsyncThread nuked its own thread handle upon exiting. This prevented the main
thread from joining it correctly in StopAsyncThread. I address this by moving the Reset() call to
StopAsyncThread, after the join.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8218
llvm-svn: 231915
Setting it from the Target architecture cause problems when the target
archiutecture is filled just by examining the executable because in that
case the OS isn't set.
Differential revision: http://reviews.llvm.org/D8035
llvm-svn: 231234
This new class makes it easier to change the timeout of a
GDBRemoteCommunication instance for a short time and then restore it to
its original value.
Differential revision: http://reviews.llvm.org/D7826
llvm-svn: 230319