Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- nested lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
As an example of what compiles:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Augment AutoType's constructor (similar to how variadic
template-type-parameters ala TemplateTypeParmDecl are implemented) to
accept an IsParameterPack to encode a generic lambda parameter pack.
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that Sema::ActOnLambdaAutoParameter may use it to create the
appropriate list of corresponding TemplateTypeParmDecl for each
auto parameter identified within the generic lambda (also stored
within the current LambdaScopeInfo). Additionally,
a TemplateParameterList data-member was added to hold the invented
TemplateParameterList AST node which will be much more useful
once we teach TreeTransform how to transform generic lambdas.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- Teach Sema::ActOnStartOfLambdaDefinition to set the
return type of a lambda without a trailing return type
to 'auto' in C++1y mode, and teach the return type
deduction machinery in SemaStmt.cpp to process either
C++11 and C++14 lambda's correctly depending on the flag.
- various tests were added - but much more will be needed.
A greatful thanks to all reviewers including Eli Friedman,
James Dennett and the ever illuminating Richard Smith. And
yet I am certain that I have allowed unidentified bugs to creep in;
bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 188977
comparing non-reference function parameters. The qualifiers don't matter for
comparisons.
This is a re-commit of r187769, which was accidentially reverted in r187770,
with a simplification at the suggestion of Eli Friedman.
llvm-svn: 188112
We would disallow the case where the overloaded member expression is
coming from an address-of operator but we wouldn't issue any diagnostics
when the overloaded member expression comes by way of a function to
pointer decay cast.
Clang's implementation of DR61 is now seemingly complete.
llvm-svn: 187559
This patch essentially removes all the FIXMEs following calls to DeduceTemplateArguments() that want to keep track of deduction failure info.
llvm-svn: 186730
recovery is not attempted with the fixit. Also move the associated test
case from FixIt/fixit.cpp to SemaCXX/member-expr.cpp since the fixit is
no longer automatically applied.
llvm-svn: 186342
standard's rule that an extern "C" declaration conflicts with any entity in the
global scope with the same name. Now we only care if the global scope entity is
a variable declaration (and so might have the same mangled name as the extern
"C" declaration). This has been reported as a standard defect.
Original commit message:
PR7927, PR16247: Reimplement handling of matching extern "C" declarations
across scopes.
When we declare an extern "C" name that is not a redeclaration of an entity in
the same scope, check whether it redeclares some extern "C" entity from another
scope, and if not, check whether it conflicts with a (non-extern-"C") entity in
the translation unit.
When we declare a name in the translation unit that is not a redeclaration,
check whether it conflicts with any extern "C" entities (possibly from other
scopes).
llvm-svn: 185281
across scopes.
When we declare an extern "C" name that is not a redeclaration of an entity in
the same scope, check whether it redeclares some extern "C" entity from another
scope, and if not, check whether it conflicts with a (non-extern-"C") entity in
the translation unit.
When we declare a name in the translation unit that is not a redeclaration,
check whether it conflicts with any extern "C" entities (possibly from other
scopes).
llvm-svn: 185229
to provide proper overloading, and also prevents mangling conflicts with
template arguments of protocol-qualified type.
This is a non-backward-compatible mangling change, but per discussion with
John, the benefits outweigh this cost.
Fixes <rdar://problem/14074822>.
llvm-svn: 184250
by ensuring DiagnoseUseOfDecl is called both on the found decl and the
decl being used (i.e the specialization in the case of member templates) whenever they are different.
Per the exchange captured in
http://lists.cs.uiuc.edu/pipermail/cfe-commits/Week-of-Mon-20130610/081636.html
a more comprehensive fix that allows both decls to be passed into DiagnoseUseOfDecl is (or should be) forthcoming relatively soon.
llvm-svn: 184043
common function. The C++1y contextual implicit conversion rules themselves are
not yet implemented, however.
This also fixes a subtle bug where template instantiation context notes were
dropped for diagnostics coming from conversions for integral constant
expressions -- we were implicitly slicing a SemaDiagnosticBuilder into a
DiagnosticBuilder when producing these diagnostics, and losing their context
notes in the process.
llvm-svn: 182406
- References to ObjC bit-field ivars are bit-field lvalues;
fixes rdar://13794269, which got me started down this.
- Introduce Expr::refersToBitField, switch a couple users to
it where semantically important, and comment the difference
between this and the existing API.
- Discourage Expr::getBitField by making it a bit longer and
less general-sounding.
- Lock down on const_casts of bit-field gl-values until we
hear back from the committee as to whether they're allowed.
llvm-svn: 181252
to use. This makes very little difference right now (other than suppressing
follow-on errors in some cases), but will matter more once we support deduced
return types (we don't want expressions with undeduced return types in the
AST).
llvm-svn: 181107
It was being used correctly, but it is a very dangerous API to have around.
Instead, move the logic from the filtering to when we are deciding if we should
link two decls.
llvm-svn: 179523
We were assuming that any expression used as a converted constant
expression would either not have a folded constant value or would be
an integer, which is not the case for some ill-formed constant
expressions. Because converted constant expressions are only used
where integral values are expected, we can simply treat this as an
error path. If that ever changes, we'll need to widen the interface of
Sema::CheckConvertedConstantExpression() anyway.
llvm-svn: 179068
When two template decls with the same name are used in this diagnostic,
force them to print their qualified names. This changes the bad message of:
candidate template ignored: could not match 'array' against 'array'
to the better message of:
candidate template ignored: could not match 'NS2::array' against 'NS1::array'
llvm-svn: 179056
When Sema::RequireCompleteType() is given a class template
specialization type that then fails to instantiate, it returns
'true'. On subsequent invocations, it can return false. Make sure that
this difference doesn't change the result of
Sema::CompareReferenceRelationship, which is expected to remain stable
while we're checking an initialization sequence.
llvm-svn: 178088
Before this patch we would compute the linkage lazily and cache it. When the
AST was modified in ways that could change the value, we would invalidate the
cache.
That was fairly brittle, since any code could ask for the a linkage before
the correct value was available.
We should change the API to one where the linkage is computed explicitly and
trying to get it when it is not available asserts.
This patch is a first step in that direction. We still compute the linkage
lazily, but instead of invalidating a cache, we assert that the AST
modifications didn't change the result.
llvm-svn: 176999
This would error in C++ mode unless the variable also had a cv
qualifier.
e.g.
__attribute__((address_space(2))) float foo = 1.0f; would error but
__attribute__((address_space(2))) const float foo = 1.0f; would not.
llvm-svn: 176121
Weather we should give C language linkage to functions and variables with
internal linkage probably depends on how much code assumes it. The standard
says they should have no language linkage, but gcc and msvc assign them
C language linkage.
This commit removes the hack that was preventing the mangling on static
functions declare in extern C contexts. It is an experiment to see if we
can implement the rules in the standard.
If it turns out that many users depend on these functions and variables
having C language linkage, we should change isExternC instead and try
to convince the CWG to change the standard.
llvm-svn: 175937