Summary:
I kind-of understand why it is restricted to integer-typed arguments,
for general enum's the value passed is not nessesairly the alignment implied,
although one might say that user would know best.
But we clearly should whitelist `std::align_val_t`,
which is just a thin wrapper over `std::size_t`,
and is the C++ standard way of specifying alignment.
Reviewers: erichkeane, rsmith, aaron.ballman, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D73019
Summary:
I initially encountered those assertions when trying to create
this IR `alignment` attribute from clang's `__attribute__((assume_aligned(imm)))`,
because until D72994 there is no sanity checking for the value of `imm`.
But even then, we have `llvm::Value::MaximumAlignment` constant (which is `536870912`),
which is enforced for clang attributes, and then there are some other magical constant
(`0x40000000` i.e. `1073741824` i.e. `2 * 536870912`) in
`Attribute::getWithAlignment()`/`AttrBuilder::addAlignmentAttr()`.
I strongly suspect that `0x40000000` is incorrect,
and that also should be `llvm::Value::MaximumAlignment`.
Reviewers: erichkeane, hfinkel, jdoerfert, gchatelet, courbet
Reviewed By: erichkeane
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D72998
Summary:
For `__builtin_assume_aligned()`, we do validate that the alignment
is not greater than `536870912` (D68824), but we don't do that for
`__attribute__((assume_aligned(N)))` attribute.
I suspect we should.
Reviewers: erichkeane, aaron.ballman, hfinkel, rsmith, jdoerfert
Reviewed By: erichkeane
Subscribers: cfe-commits, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D72994
This feature is generic. Make it applicable for AArch64 and X86 because
the backend has only implemented NOP insertion for AArch64 and X86.
Reviewed By: nickdesaulniers, aaron.ballman
Differential Revision: https://reviews.llvm.org/D72221
Summary:
Avoid using the `nocf_check` attribute with Control Flow Guard. Instead, use a
new `"guard_nocf"` function attribute to indicate that checks should not be
added on indirect calls within that function. Add support for
`__declspec(guard(nocf))` following the same syntax as MSVC.
Reviewers: rnk, dmajor, pcc, hans, aaron.ballman
Reviewed By: aaron.ballman
Subscribers: aaron.ballman, tomrittervg, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72167
Function trailing requires clauses now parsed, supported in overload resolution and when calling, referencing and taking the address of functions or function templates.
Differential Revision: https://reviews.llvm.org/D43357
It turns out it is useful to be able to define the deref type as void.
In case we have a type erased owner, we want to express that the pointee
can be basically any type. It should not be unnatural to have a void
deref type as we already familiar with "pointers to void".
Differential Revision: https://reviews.llvm.org/D72097
msvc allows a subsequent declaration of a uuid attribute on a
struct/class. Mirror this behavior in clang-cl.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D71439
These annotations will be used in an upcomming static analyzer check
that finds handle leaks, use after releases, and double releases.
Differential Revision: https://reviews.llvm.org/D70469
This change updates the clang front end to add symbols to llvm.used
when they have explicit export_name attribute.
Differential Revision: https://reviews.llvm.org/D71493
This is equivalent to the existing `import_name` and `import_module`
attributes which control the import names in the final wasm binary
produced by lld.
This maps the existing
This attribute currently requires a string rather than using the
symbol name for a couple of reasons:
1. Avoid confusion with static and dynamic linking which is
based on symbol name. Exporting a function from a wasm module using
this directive is orthogonal to both static and dynamic linking.
2. Avoids name mangling.
Differential Revision: https://reviews.llvm.org/D70520
SYCL is single source offload programming model relying on compiler to
separate device code (i.e. offloaded to an accelerator) from the code
executed on the host.
Here is code example of the SYCL program to demonstrate compiler
outlining work:
```
int foo(int x) { return ++x; }
int bar(int x) { throw std::exception("CPU code only!"); }
...
using namespace cl::sycl;
queue Q;
buffer<int, 1> a(range<1>{1024});
Q.submit([&](handler& cgh) {
auto A = a.get_access<access::mode::write>(cgh);
cgh.parallel_for<init_a>(range<1>{1024}, [=](id<1> index) {
A[index] = index[0] + foo(42);
});
}
...
```
SYCL device compiler must compile lambda expression passed to
cl::sycl::handler::parallel_for method and function foo called from this
lambda expression for an "accelerator". SYCL device compiler also must
ignore bar function as it's not required for offloaded code execution.
This patch adds the sycl_kernel attribute, which is used to mark code
passed to cl::sycl::handler::parallel_for as "accelerated code".
Attribute must be applied to function templates which parameters include
at least "kernel name" and "kernel function object". These parameters
will be used to establish an ABI between the host application and
offloaded part.
Reviewers: jlebar, keryell, Naghasan, ABataev, Anastasia, bader, aaron.ballman, rjmccall, rsmith
Reviewed By: keryell, bader
Subscribers: mgorny, OlegM, ArturGainullin, agozillon, aaron.ballman, ebevhan, Anastasia, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60455
Signed-off-by: Alexey Bader <alexey.bader@intel.com>
This avoids the need to include Attr.h in DeclCXX.h for a four-value
enum. Removing the include will be done separately, since it is large
and risky change.
__attribute__((objc_direct)) is an attribute on methods declaration, and
__attribute__((objc_direct_members)) on implementation, categories or
extensions.
A `direct` property specifier is added (@property(direct) type name)
These attributes / specifiers cause the method to have no associated
Objective-C metadata (for the property or the method itself), and the
calling convention to be a direct C function call.
The symbol for the method has enforced hidden visibility and such direct
calls are hence unreachable cross image. An explicit C function must be
made if so desired to wrap them.
The implicit `self` and `_cmd` arguments are preserved, however to
maintain compatibility with the usual `objc_msgSend` semantics,
3 fundamental precautions are taken:
1) for instance methods, `self` is nil-checked. On arm64 backends this
typically adds a single instruction (cbz x0, <closest-ret>) to the
codegen, for the vast majority of the cases when the return type is a
scalar.
2) for class methods, because the class may not be realized/initialized
yet, a call to `[self self]` is emitted. When the proper deployment
target is used, this is optimized to `objc_opt_self(self)`.
However, long term we might want to emit something better that the
optimizer can reason about. When inlining kicks in, these calls
aren't optimized away as the optimizer has no idea that a single call
is really necessary.
3) the calling convention for the `_cmd` argument is changed: the caller
leaves the second argument to the call undefined, and the selector is
loaded inside the body when it's referenced only.
As far as error reporting goes, the compiler refuses:
- making any overloads direct,
- making an overload of a direct method,
- implementations marked as direct when the declaration in the
interface isn't (the other way around is allowed, as the direct
attribute is inherited from the declaration),
- marking methods required for protocol conformance as direct,
- messaging an unqualified `id` with a direct method,
- forming any @selector() expression with only direct selectors.
As warnings:
- any inconsistency of direct-related calling convention when
@selector() or messaging is used,
- forming any @selector() expression with a possibly direct selector.
Lastly an `objc_direct_members` attribute is added that can decorate
`@implementation` blocks and causes methods only declared there (and in
no `@interface`) to be automatically direct. When decorating an
`@interface` then all methods and properties declared in this block are
marked direct.
Radar-ID: rdar://problem/2684889
Differential Revision: https://reviews.llvm.org/D69991
Reviewed-By: John McCall
This is a resubmission for the previous reverted commit
9434360401 with the same subject. This commit fixed the
segfault issue and addressed additional review comments.
This patch introduced a new bpf specific attribute which can
be added to struct or union definition. For example,
struct s { ... } __attribute__((preserve_access_index));
union u { ... } __attribute__((preserve_access_index));
The goal is to simplify user codes for cases
where preserve access index happens for certain struct/union,
so user does not need to use clang __builtin_preserve_access_index
for every members.
The attribute has no effect if -g is not specified.
When the attribute is specified and -g is specified, any member
access defined by that structure or union, including array subscript
access and inner records, will be preserved through
__builtin_preserve_{array,struct,union}_access_index()
IR intrinsics, which will enable relocation generation
in bpf backend.
The following is an example to illustrate the usage:
-bash-4.4$ cat t.c
#define __reloc__ __attribute__((preserve_access_index))
struct s1 {
int c;
} __reloc__;
struct s2 {
union {
struct s1 b[3];
};
} __reloc__;
struct s3 {
struct s2 a;
} __reloc__;
int test(struct s3 *arg) {
return arg->a.b[2].c;
}
-bash-4.4$ clang -target bpf -g -S -O2 t.c
A relocation with access string "0:0:0:0:2:0" will be generated
representing access offset of arg->a.b[2].c.
forward declaration with attribute is also handled properly such
that the attribute is copied and populated in real record definition.
Differential Revision: https://reviews.llvm.org/D69759
This patch introduced a new bpf specific attribute which can
be added to struct or union definition. For example,
struct s { ... } __attribute__((preserve_access_index));
union u { ... } __attribute__((preserve_access_index));
The goal is to simplify user codes for cases
where preserve access index happens for certain struct/union,
so user does not need to use clang __builtin_preserve_access_index
for every members.
The attribute has no effect if -g is not specified.
When the attribute is specified and -g is specified, any member
access defined by that structure or union, including array subscript
access and inner records, will be preserved through
__builtin_preserve_{array,struct,union}_access_index()
IR intrinsics, which will enable relocation generation
in bpf backend.
The following is an example to illustrate the usage:
-bash-4.4$ cat t.c
#define __reloc__ __attribute__((preserve_access_index))
struct s1 {
int c;
} __reloc__;
struct s2 {
union {
struct s1 b[3];
};
} __reloc__;
struct s3 {
struct s2 a;
} __reloc__;
int test(struct s3 *arg) {
return arg->a.b[2].c;
}
-bash-4.4$ clang -target bpf -g -S -O2 t.c
A relocation with access string "0:0:0:0:2:0" will be generated
representing access offset of arg->a.b[2].c.
forward declaration with attribute is also handled properly such
that the attribute is copied and populated in real record definition.
Differential Revision: https://reviews.llvm.org/D69759
Summary:
This is a follow up on https://reviews.llvm.org/D61634
This patch is simpler and only adds the no_builtin attribute.
Reviewers: tejohnson, courbet, theraven, t.p.northover, jdoerfert
Subscribers: mgrang, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68028
This is a re-submit after it got reverted in https://reviews.llvm.org/rGbd8791610948 since the breakage doesn't seem to come from this patch.
Summary:
This is a follow up on https://reviews.llvm.org/D61634
This patch is simpler and only adds the no_builtin attribute.
Reviewers: tejohnson, courbet, theraven, t.p.northover, jdoerfert
Subscribers: mgrang, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68028
This commit sets up the infrastructure for auto-generating <arm_mve.h>
and doing clang-side code generation for the builtins it relies on,
and demonstrates that it works by implementing a representative sample
of the ACLE intrinsics, more or less matching the ones introduced in
LLVM IR by D67158,D68699,D68700.
Like NEON, that header file will provide a set of vector types like
uint16x8_t and C functions with names like vaddq_u32(). Unlike NEON,
the ACLE spec for <arm_mve.h> includes a polymorphism system, so that
you can write plain vaddq() and disambiguate by the vector types you
pass to it.
Unlike the corresponding NEON code, I've arranged to make every user-
facing ACLE intrinsic into a clang builtin, and implement all the code
generation inside clang. So <arm_mve.h> itself contains nothing but
typedefs and function declarations, with the latter all using the new
`__attribute__((__clang_builtin))` system to arrange that the user-
facing function names correspond to the right internal BuiltinIDs.
So the new MveEmitter tablegen system specifies the full sequence of
IRBuilder operations that each user-facing ACLE intrinsic should
translate into. Where possible, the ACLE intrinsics map to standard IR
operations such as vector-typed `add` and `fadd`; where no standard
representation exists, I call down to the sample IR intrinsics
introduced in an earlier commit.
Doing it like this means that you get the polymorphism for free just
by using __attribute__((overloadable)): the clang overload resolution
decides which function declaration is the relevant one, and _then_ its
BuiltinID is looked up, so by the time we're doing code generation,
that's all been resolved by the standard system. It also means that
you get really nice error messages if the user passes the wrong
combination of types: clang will show the declarations from the header
file and explain why each one doesn't match.
(The obvious alternative approach would be to have wrapper functions
in <arm_mve.h> which pass their arguments to the underlying builtins.
But that doesn't work in the case where one of the arguments has to be
a constant integer: the wrapper function can't pass the constantness
through. So you'd have to do that case using a macro instead, and then
use C11 `_Generic` to handle the polymorphism. Then you have to add
horrible workarounds because `_Generic` requires even the untaken
branches to type-check successfully, and //then// if the user gets the
types wrong, the error message is totally unreadable!)
Reviewers: dmgreen, miyuki, ostannard
Subscribers: mgorny, javed.absar, kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67161
This allows you to declare a function with a name of your choice (say
`foo`), but have clang treat it as if it were a builtin function (say
`__builtin_foo`), by writing
static __inline__ __attribute__((__clang_arm_mve_alias(__builtin_foo)))
int foo(args);
I'm intending to use this for the ACLE intrinsics for MVE, which have
to be polymorphic on their argument types and also need to be
implemented by builtins. To avoid having to implement the polymorphism
with several layers of nested _Generic and make error reporting
hideous, I want to make all the user-facing intrinsics correspond
directly to clang builtins, so that after clang resolves
__attribute__((overloadable)) polymorphism it's already holding the
right BuiltinID for the intrinsic it selected.
However, this commit itself just introduces the new attribute, and
doesn't use it for anything.
To avoid unanticipated side effects if this attribute is used to make
aliases to other builtins, there's a restriction mechanism: only
(BuiltinID, alias) pairs that are approved by the function
ArmMveAliasValid() will be permitted. At present, that function
doesn't permit anything, because the Tablegen that will generate its
list of valid pairs isn't yet implemented. So the only test of this
facility is one that checks that an unapproved builtin _can't_ be
aliased.
Reviewers: dmgreen, miyuki, ostannard
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D67159
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<> directly and if not assert will fire for us.
llvm-svn: 373753
The static analyzer is warning about potential null dereferences, but in these cases we should be able to use castAs<RecordType> directly and if not assert will fire for us.
llvm-svn: 373584
This matches how GCC handles it, see e.g. https://gcc.godbolt.org/z/HPplnl.
GCC documents the gnu_inline attribute with "In C++, this attribute does
not depend on extern in any way, but it still requires the inline keyword
to enable its special behavior."
The previous behaviour of gnu_inline in C++, without the extern
keyword, can be traced back to the original commit that added
support for gnu_inline, SVN r69045.
Differential Revision: https://reviews.llvm.org/D67414
llvm-svn: 373078
Summary:
- Even though only `void` is still accepted as the deduced return type,
enabling deduction/instantiation on the return type allows more
consistent coding.
Reviewers: tra, jlebar
Subscribers: cfe-commits, yaxunl
Tags: #clang
Differential Revision: https://reviews.llvm.org/D68031
llvm-svn: 372898
In order to enable future improvements to our attribute diagnostics,
this moves info from ParsedAttr into CommonAttributeInfo, then makes
this type the base of the *Attr and ParsedAttr types. Quite a bit of
refactoring took place, including removing a bunch of redundant Spelling
Index propogation.
Differential Revision: https://reviews.llvm.org/D67368
llvm-svn: 371875
Reland after https://reviews.llvm.org/D66806 fixed the false-positive diagnostics.
Summary:
This fixes inference of gsl::Pointer on std::set::iterator with libstdc++ (the typedef for iterator
on the template is a DependentNameType - we can only put the gsl::Pointer attribute
on the underlaying record after instantiation)
inference of gsl::Pointer on std::vector::iterator with libc++ (the class was forward-declared,
we added the gsl::Pointer on the canonical decl (the forward decl), and later when the
template was instantiated, there was no attribute on the definition so it was not instantiated).
and a duplicate gsl::Pointer on some class with libstdc++ (we first added an attribute to
a incomplete instantiation, and then another was copied from the template definition
when the instantiation was completed).
We now add the attributes to all redeclarations to fix thos issues and make their usage easier.
Reviewers: gribozavr
Subscribers: Szelethus, xazax.hun, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66179
llvm-svn: 371182
This is mostly the same as the
[[clang::require_constant_initialization]] attribute, but has a couple
of additional syntactic and semantic restrictions.
In passing, I added a warning for the attribute form being added after
we have already seen the initialization of the variable (but before we
see the definition); that case previously slipped between the cracks and
the attribute was silently ignored.
llvm-svn: 370972
This reverts commit r369591, because it causes the formerly-reliable
-Wreturn-stack-address warning to start issuing false positives.
Testcase provided on the commit thread.
llvm-svn: 369677
Summary:
This fixes inference of gsl::Pointer on std::set::iterator with libstdc++ (the typedef for iterator
on the template is a DependentNameType - we can only put the gsl::Pointer attribute
on the underlaying record after instantiation)
inference of gsl::Pointer on std::vector::iterator with libc++ (the class was forward-declared,
we added the gsl::Pointer on the canonical decl (the forward decl), and later when the
template was instantiated, there was no attribute on the definition so it was not instantiated).
and a duplicate gsl::Pointer on some class with libstdc++ (we first added an attribute to
a incomplete instantiation, and then another was copied from the template definition
when the instantiation was completed).
We now add the attributes to all redeclarations to fix thos issues and make their usage easier.
Reviewers: gribozavr
Subscribers: Szelethus, xazax.hun, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D66179
llvm-svn: 369591
The default behavior of Clang's indirect function call checker will replace
the address of each CFI-checked function in the output file's symbol table
with the address of a jump table entry which will pass CFI checks. We refer
to this as making the jump table `canonical`. This property allows code that
was not compiled with ``-fsanitize=cfi-icall`` to take a CFI-valid address
of a function, but it comes with a couple of caveats that are especially
relevant for users of cross-DSO CFI:
- There is a performance and code size overhead associated with each
exported function, because each such function must have an associated
jump table entry, which must be emitted even in the common case where the
function is never address-taken anywhere in the program, and must be used
even for direct calls between DSOs, in addition to the PLT overhead.
- There is no good way to take a CFI-valid address of a function written in
assembly or a language not supported by Clang. The reason is that the code
generator would need to insert a jump table in order to form a CFI-valid
address for assembly functions, but there is no way in general for the
code generator to determine the language of the function. This may be
possible with LTO in the intra-DSO case, but in the cross-DSO case the only
information available is the function declaration. One possible solution
is to add a C wrapper for each assembly function, but these wrappers can
present a significant maintenance burden for heavy users of assembly in
addition to adding runtime overhead.
For these reasons, we provide the option of making the jump table non-canonical
with the flag ``-fno-sanitize-cfi-canonical-jump-tables``. When the jump
table is made non-canonical, symbol table entries point directly to the
function body. Any instances of a function's address being taken in C will
be replaced with a jump table address.
This scheme does have its own caveats, however. It does end up breaking
function address equality more aggressively than the default behavior,
especially in cross-DSO mode which normally preserves function address
equality entirely.
Furthermore, it is occasionally necessary for code not compiled with
``-fsanitize=cfi-icall`` to take a function address that is valid
for CFI. For example, this is necessary when a function's address
is taken by assembly code and then called by CFI-checking C code. The
``__attribute__((cfi_jump_table_canonical))`` attribute may be used to make
the jump table entry of a specific function canonical so that the external
code will end up taking a address for the function that will pass CFI checks.
Fixes PR41972.
Differential Revision: https://reviews.llvm.org/D65629
llvm-svn: 368495
Summary:
This is the first part of work announced in
"[RFC] Adding lifetime analysis to clang" [0],
i.e. the addition of the [[gsl::Owner(T)]] and
[[gsl::Pointer(T)]] attributes, which
will enable user-defined types to participate in
the lifetime analysis (which will be part of the
next PR).
The type `T` here is called "DerefType" in the paper,
and denotes the type that an Owner owns and a Pointer
points to. E.g. `std::vector<int>` should be annotated
with `[[gsl::Owner(int)]]` and
a `std::vector<int>::iterator` with `[[gsl::Pointer(int)]]`.
[0] http://lists.llvm.org/pipermail/cfe-dev/2018-November/060355.html
Reviewers: gribozavr
Subscribers: xazax.hun, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63954
llvm-svn: 367040
As passed in the Cologne meeting and treated by Core as a DR,
[[nodiscard]] was applied to constructors so that they can be diagnosed
in cases where the user forgets a variable name for a type.
The intent is to enable the library to start using this on the
constructors of scope_guard/lock_guard.
Differential Revision: https://reviews.llvm.org/D64914
llvm-svn: 367027
As discussed in D64780 the wording of this warning message is being
changed to say 'is not supported' instead of 'ignored', and the
diag ID itself is being changed to warn_cconv_not_supported.
llvm-svn: 366368
The CCCR_Ignore action is only used for Microsoft calling conventions,
mainly because MSVC does not warn when a calling convention would be
ignored by the current target. This behavior is actually somewhat
important, since windows.h uses WINAPI (which expands to __stdcall)
widely. This distinction didn't matter much before the introduction of
__vectorcall to x64 and the ability to make that the default calling
convention with /Gv. Now, we can't just ignore __stdcall for x64, we
have to treat it as an explicit __cdecl annotation.
Fixes PR42531
llvm-svn: 365579
This patch introduces support of hip_pinned_shadow variable for HIP.
A hip_pinned_shadow variable is a global variable with attribute hip_pinned_shadow.
It has external linkage on device side and has no initializer. It has internal
linkage on host side and has initializer or static constructor. It can be accessed
in both device code and host code.
This allows HIP runtime to implement support of HIP texture reference.
Differential Revision: https://reviews.llvm.org/D62738
llvm-svn: 364381
Summary:
Add support for the C++2a [[no_unique_address]] attribute for targets using the Itanium C++ ABI.
This depends on D63371.
Reviewers: rjmccall, aaron.ballman
Subscribers: dschuff, aheejin, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D63451
llvm-svn: 363976
Summary:
this revision adds Lexing, Parsing and Basic Semantic for the consteval specifier as specified by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1073r3.html
with this patch, the consteval specifier is treated as constexpr but can only be applied to function declaration.
Changes:
- add the consteval keyword.
- add parsing of consteval specifier for normal declarations and lambdas expressions.
- add the whether a declaration is constexpr is now represented by and enum everywhere except for variable because they can't be consteval.
- adapt diagnostic about constexpr to print constexpr or consteval depending on the case.
- add tests for basic semantic.
Reviewers: rsmith, martong, shafik
Reviewed By: rsmith
Subscribers: eraman, efriedma, rnkovacs, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D61790
llvm-svn: 363362
In response to https://bugs.llvm.org/show_bug.cgi?id=33235, it became
clear that the current mechanism of hacking through checks for the
exception specification of a function gets confused really quickly when
there are alternate exception specifiers.
This patch introcues EST_NoThrow, which is the equivilent of
EST_noexcept when caused by EST_noThrow. The existing implementation is
left in place to cover functions with no FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D62435
llvm-svn: 362119