Summary:
In preparation for https://reviews.llvm.org/D41675 this NFC changes this
prototype of MemIntrinsicInst::setAlignment() to accept an unsigned instead
of a Constant.
llvm-svn: 322403
Currently we infer the scale at isel time by analyzing whether the base is a constant 0 or not. If it is we assume scale is 1, else we take it from the element size of the pass thru or stored value. This seems a little weird and I think it makes more sense to make it explicit in the DAG rather than doing tricky things in the backend.
Most of this patch is just making sure we copy the scale around everywhere.
Differential Revision: https://reviews.llvm.org/D40055
llvm-svn: 322210
Prefetches used to always be chained between any previous and following
memory accesses. The problem with this was that later optimizations, such as
folding of a load into the user instruction, got disrupted.
This patch relaxes the chaining of prefetches in order to remedy this.
Reveiw: Hal Finkel
https://reviews.llvm.org/D38886
llvm-svn: 322163
While investigating LLVM PR22316 (http://llvm.org/bugs/show_bug.cgi?id=22316)
I started wondering if it were not always preferable to emit the
initial DBG_VALUEs for stack arguments as FI locations instead of
describing the first register they get copied into. The advantage of
doing this is that the arguments will be available as soon as the
stack is setup. As illustrated by the testcase in the PR, the first
copy of the FI into a register may be sunk by MachineSink.cpp into a
later basic block. By describing the argument on the stack, we nicely
circumvent this problem.
<rdar://problem/19583723>
Differential Revision: https://reviews.llvm.org/D41135
llvm-svn: 320758
Most of the -Wsign-compare warnings are due to the fact that
enums are signed by default in the MS ABI, while the
tautological comparison warnings trigger on x86 builds where
sizeof(size_t) is 4 bytes, so N > numeric_limits<unsigned>::max()
is always false.
Differential Revision: https://reviews.llvm.org/D41256
llvm-svn: 320750
Rather than adding more bits to express every
MMO flag you could want, just directly use the
MMO flags. Also fixes using a bunch of bool arguments to
getMemIntrinsicNode.
On AMDGPU, buffer and image intrinsics should always
have MODereferencable set, but currently there is no
way to do that directly during the initial intrinsic
lowering.
llvm-svn: 320746
Summary:
This relaxes an assertion inside SelectionDAGBuilder which is overly
restrictive on targets which have no concept of alignment (such as AVR).
In these architectures, all types are aligned to 8-bits.
After this, LLVM will only assert that accesses are aligned on targets
which actually require alignment.
This patch follows from a discussion on llvm-dev a few months ago
http://llvm.1065342.n5.nabble.com/llvm-dev-Unaligned-atomic-load-store-td112815.html
Reviewers: bogner, nemanjai, joerg, efriedma
Reviewed By: efriedma
Subscribers: efriedma, cactus, llvm-commits
Differential Revision: https://reviews.llvm.org/D39946
llvm-svn: 320243
The patch originally broke Chromium (crbug.com/791714) due to its failing to
specify that the new pseudo instructions clobber EFLAGS. This commit fixes
that.
> Summary: This strengthens the guard and matches MSVC.
>
> Reviewers: hans, etienneb
>
> Subscribers: hiraditya, JDevlieghere, vlad.tsyrklevich, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D40622
llvm-svn: 319824
SelectionDAGISel::LowerArguments assumes sret addr space is 0, which is
not true for amdgcn---amdgiz target.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D40255
llvm-svn: 319630
These command line options are not intended for public use, and often
don't even make sense in the context of a particular tool anyway. About
90% of them are already hidden, but when people add new options they
forget to hide them, so if you were to make a brand new tool today, link
against one of LLVM's libraries, and run tool -help you would get a
bunch of junk that doesn't make sense for the tool you're writing.
This patch hides these options. The real solution is to not have
libraries defining command line options, but that's a much larger effort
and not something I'm prepared to take on.
Differential Revision: https://reviews.llvm.org/D40674
llvm-svn: 319505
The object can't straddle the address space
wrap around, so I think it's OK to assume any
offsets added to the base object pointer can't
overflow. Similar logic already appears to be
applied in SelectionDAGBuilder when lowering
aggregate returns.
llvm-svn: 319272
Summary:
Recommitting this with the correct sorting predicate. The Low field of Clusters is a ConstantInt and
cannot be directly compared. So we needed to invoke slt (signed less than) to compare correctly.
This fixes failures in the following tests uncovered by D39245:
LLVM :: CodeGen/ARM/ifcvt3.ll
LLVM :: CodeGen/ARM/switch-minsize.ll
LLVM :: CodeGen/X86/switch.ll
LLVM :: CodeGen/X86/switch-bt.ll
LLVM :: CodeGen/X86/switch-density.ll
Reviewers: hans, fhahn
Reviewed By: hans
Subscribers: aemerson, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D40541
llvm-svn: 319210
This is needed for cases when the memory access is not as big as the width of
the data type. For instance, storing i1 (1 bit) would be done in a byte (8
bits).
Using 'BitSize >> 3' (or '/ 8') would e.g. give the memory access of an i1 a
size of 0, which for instance makes alias analysis return NoAlias even when
it shouldn't.
There are no tests as this was done as a follow-up to the bugfix for the case
where this was discovered (r318824). This handles more similar cases.
Review: Björn Petterson
https://reviews.llvm.org/D40339
llvm-svn: 319173
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
The sign extend might be from an i16 or i8 type and was inserted by InstCombine to match the pointer width. X86 gather legalization isn't currently detecting this to reinsert a sign extend to make things legal.
It's a bit weird for the SelectionDAGBuilder to do this kind of optimization in the first place. With this removed we can at least lean on InstCombine somewhat to ensure the index is i32 or i64.
I'll work on trying to recover some of the test cases by removing sign extends in the backend when its safe to do so with an understanding of the current legalizer capabilities.
This should fix PR30690.
llvm-svn: 318466
SelectionDAGBuilder::visitAlloca assumes alloca address space is 0, which is
incorrect for triple amdgcn---amdgiz and causes isel failure.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D40095
llvm-svn: 318392
Due to integer precision, we might have numerator greater than denominator in
the branch probability scaling. Add a check to prevent this from happening.
llvm-svn: 318353
This patch peels off the top case in switch statement into a branch if the
probability exceeds a threshold. This will help the branch prediction and
avoids the extra compares when lowering into chain of branches.
Differential Revision: http://reviews.llvm.org/D39262
llvm-svn: 318202
TargetLowering::LowerCallTo assumes that sret value type corresponds to a
pointer in default address space, which is incorrect, since sret value type
should correspond to a pointer in alloca address space, which may not
be the default address space. This causes assertion for amdgcn target
in amdgiz environment.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D39996
llvm-svn: 318167
This is a fix for a bug in r317947. We were supposed to check that all the indices are are constant 0, but instead we're only make sure that indices that are constant are 0. Non-constant indices are being ignored.
llvm-svn: 317950
Currently we can only get a uniform base from a simple GEP with 2 operands. This causes us to miss address folding opportunities for simple global array accesses as the test case shows.
This patch adds support for larger GEPs if the other indices are 0 since those don't require any additional computations to be inserted.
We may also want to handle constant splats of zero here, but I'm leaving that for future work when I have a real world example.
Differential Revision: https://reviews.llvm.org/D39911
llvm-svn: 317947
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
In 2010 a commit with no testcase and no further explanation
explicitly disabled the handling of inlined variables in
EmitFuncArgumentDbgValue(). I don't think there is a good reason for
this any more and re-enabling this adds debug locations for variables
associated with an LLVM function argument in functions that are
inlined into the first basic block. The only downside of doing this is
that we may insert a DBG_VALUE before the inlined scope, but (1) this
could be filtered out later, and (2) LiveDebugValues will not
propagate it into subsequent basic blocks if they don't dominate the
variable's lexical scope, so this seems like a small price to pay.
rdar://problem/26228128
llvm-svn: 317702
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
Summary:
For reference, see: http://lists.llvm.org/pipermail/llvm-dev/2017-August/116589.html
This patch fleshes out the instruction class hierarchy with respect to atomic and
non-atomic memory intrinsics. With this change, the relevant part of the class
hierarchy becomes:
IntrinsicInst
-> MemIntrinsicBase (methods-only class)
-> MemIntrinsic (non-atomic intrinsics)
-> MemSetInst
-> MemTransferInst
-> MemCpyInst
-> MemMoveInst
-> AtomicMemIntrinsic (atomic intrinsics)
-> AtomicMemSetInst
-> AtomicMemTransferInst
-> AtomicMemCpyInst
-> AtomicMemMoveInst
-> AnyMemIntrinsic (both atomicities)
-> AnyMemSetInst
-> AnyMemTransferInst
-> AnyMemCpyInst
-> AnyMemMoveInst
This involves some class renaming:
ElementUnorderedAtomicMemCpyInst -> AtomicMemCpyInst
ElementUnorderedAtomicMemMoveInst -> AtomicMemMoveInst
ElementUnorderedAtomicMemSetInst -> AtomicMemSetInst
A script for doing this renaming in downstream trees is included below.
An example of where the Any* classes should be used in LLVM is when reasoning
about the effects of an instruction (ex: aliasing).
---
Script for renaming AtomicMem* classes:
PREFIXES="[<,([:space:]]"
CLASSES="MemIntrinsic|MemTransferInst|MemSetInst|MemMoveInst|MemCpyInst"
SUFFIXES="[;)>,[:space:]]"
REGEX="(${PREFIXES})ElementUnorderedAtomic(${CLASSES})(${SUFFIXES})"
REGEX2="visitElementUnorderedAtomic(${CLASSES})"
FILES=$( grep -E "(${REGEX}|${REGEX2})" -r . | tr ':' ' ' | awk '{print $1}' | sort | uniq )
SED_SCRIPT="s~${REGEX}~\1Atomic\2\3~g"
SED_SCRIPT2="s~${REGEX2}~visitAtomic\1~g"
for f in $FILES; do
echo "Processing: $f"
sed -i ".bak" -E "${SED_SCRIPT};${SED_SCRIPT2};${EA_SED_SCRIPT};${EA_SED_SCRIPT2}" $f
done
Reviewers: sanjoy, deadalnix, apilipenko, anna, skatkov, mkazantsev
Reviewed By: sanjoy
Subscribers: hfinkel, jholewinski, arsenm, sdardis, nhaehnle, JDevlieghere, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38419
llvm-svn: 316950
This fixes a bug where we'd crash given code like the test-case from
https://bugs.llvm.org/show_bug.cgi?id=30792 . Instead, we let the
offending clobber silently slide through.
This doesn't fully fix said bug, since the assembler will still complain
the moment it sees a crypto/fp/vector op, and we still don't diagnose
calls that require vector regs.
Differential Revision: https://reviews.llvm.org/D39030
llvm-svn: 316374
The NumFixedArgs field of CallLoweringInfo is used by
TargetLowering::LowerCallTo to determine whether a given argument is passed
using the vararg calling convention or not (specifically, to set IsFixed for
each ISD::OutputArg).
Firstly, CallLoweringInfo::setLibCallee and CallLoweringInfo::setCallee both
incorrectly set NumFixedArgs based on the _previous_ args list. Secondly,
TargetLowering::LowerCallTo failed to increment NumFixedArgs when modifying
the argument list so a pointer is passed for the return value.
If your backend uses the IsFixed property or directly accesses NumFixedArgs,
it is _possible_ this change could result in codegen changes (although the
previous behaviour would have been incorrect). No such cases have been
identified during code review for any in-tree architecture.
Differential Revision: https://reviews.llvm.org/D37898
llvm-svn: 315457
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ if (DII == InsertBefore)
+ InsertBefore = &*std::next(InsertBefore->getIterator());
DII->eraseFromParent();
I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.
The reduced C test case for this was:
void useit(int*);
static inline void inlineme() {
int x[2];
useit(x);
}
void f() {
inlineme();
inlineme();
}
llvm-svn: 313905
Summary:
SelectionDAGISel::LowerArguments is associating arguments
with frame indices (FuncInfo->setArgumentFrameIndex). That
information is later on used by EmitFuncArgumentDbgValue to
create DBG_VALUE instructions that denotes that a variable
can be found on the stack.
I discovered that for our (big endian) out-of-tree target
the association created by SelectionDAGISel::LowerArguments
sometimes is wrong. I've seen this happen when a 64-bit value
is passed on the stack. The argument will occupy two stack
slots (frame index X, and frame index X+1). The fault is
that a call to setArgumentFrameIndex is associating the
64-bit argument with frame index X+1. The effect is that the
debug information (DBG_VALUE) will point at the least significant
part of the arguement on the stack. When printing the
argument in a debugger I will get the wrong value.
I managed to create a test case for PowerPC that seems to
show the same kind of problem.
The bugfix will look at the datalayout, taking endianness into
account when examining a BUILD_PAIR node, assuming that the
least significant part is in the first operand of the BUILD_PAIR.
For big endian targets we should use the frame index from
the second operand, as the most significant part will be stored
at the lower address (using the highest frame index).
Reviewers: bogner, rnk, hfinkel, sdardis, aprantl
Reviewed By: aprantl
Subscribers: nemanjai, aprantl, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37740
llvm-svn: 313901
.. as well as the two subsequent changes r313826 and r313875.
This leads to segfaults in combination with ASAN. Will forward repro
instructions to the original author (rnk).
llvm-svn: 313876
Summary:
This implements the design discussed on llvm-dev for better tracking of
variables that live in memory through optimizations:
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117222.html
This is tracked as PR34136
llvm.dbg.addr is intended to be produced and used in almost precisely
the same way as llvm.dbg.declare is today, with the exception that it is
control-dependent. That means that dbg.addr should always have a
position in the instruction stream, and it will allow passes that
optimize memory operations on local variables to insert llvm.dbg.value
calls to reflect deleted stores. See SourceLevelDebugging.rst for more
details.
The main drawback to generating DBG_VALUE machine instrs is that they
usually cause LLVM to emit a location list for DW_AT_location. The next
step will be to teach DwarfDebug.cpp how to recognize more DBG_VALUE
ranges as not needing a location list, and possibly start setting
DW_AT_start_offset for variables whose lifetimes begin mid-scope.
Reviewers: aprantl, dblaikie, probinson
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37768
llvm-svn: 313825
Summary:
This intrinsic represents a label with a list of associated metadata
strings. It is modelled as reading and writing inaccessible memory so
that it won't be removed as dead code. I think the intention is that the
annotation strings should appear at most once in the debug info, so I
marked it noduplicate. We are allowed to inline code with annotations as
long as we strip the annotation, but that can be done later.
Reviewers: majnemer
Subscribers: eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36904
llvm-svn: 312569
Previously we would just describe the first register and then call it
quits. This patch emits fragment expressions for each register.
<rdar://problem/34075307>
llvm-svn: 312169
The SelectionDAGBuilder translates various conditional branches into
CaseBlocks which are then translated into SDNodes. If a conditional
branch results in multiple CaseBlocks only the first CaseBlock is
translated into SDNodes immediately, the rest of the CaseBlocks are
put in a queue and processed when all LLVM IR instructions in the
basic block have been processed.
When a CaseBlock is transformed into SDNodes the SelectionDAGBuilder
is queried for the current LLVM IR instruction and the resulting
SDNodes are annotated with the debug info of the current
instruction (if it exists and has debug metadata).
When the deferred CaseBlocks are processed, the SelectionDAGBuilder
does not have a current LLVM IR instruction, and the resulting SDNodes
will not have any debuginfo. As DwarfDebug::beginInstruction() outputs
a .loc directive for the first instruction in a labeled
block (typically the case for something coming from a CaseBlock) this
tends to produce a line-0 directive.
This patch changes the handling of CaseBlocks to store the current
instruction's debug info into the CaseBlock when it is created (and the
SelectionDAGBuilder knows the current instruction) and to always use
the stored debug info when translating a CaseBlock to SDNodes.
Patch by Frej Drejhammar!
Differential Revision: https://reviews.llvm.org/D36671
llvm-svn: 311097
Summary:
We already have information about static alloca stack locations in our
side table. Emitting instructions for them is inefficient, and it only
happens when the address of the alloca has been materialized within the
current block, which isn't often.
Reviewers: aprantl, probinson, dblaikie
Subscribers: jfb, dschuff, sbc100, jgravelle-google, hiraditya, llvm-commits, aheejin
Differential Revision: https://reviews.llvm.org/D36117
llvm-svn: 309729
PR33883 shows that calls to intrinsic functions should not have their vector
arguments or returns subject to ABI changes required by the target.
This resolves PR33883.
Thanks to Alex Crichton for reporting the issue!
Reviewers: zoran.jovanovic, atanasyan
Differential Revision: https://reviews.llvm.org/D35765
llvm-svn: 309561
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memset intrinsic. This intrinsic is essentially memset with the implementation requirement that all stores used for the assignment are done with unordered-atomic stores of a given element size.
Reviewers: eli.friedman, reames, mkazantsev, skatkov
Reviewed By: reames
Subscribers: jfb, dschuff, sbc100, jgravelle-google, aheejin, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D34885
llvm-svn: 307854
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memmove intrinsic. This intrinsic is essentially memmove with the implementation requirement that all loads/stores used for the copy are done with unordered-atomic loads/stores of a given element size.
Reviewers: eli.friedman, reames, mkazantsev, skatkov
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34884
llvm-svn: 307796
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
This change fixes a bug in SelectionDAGBuilder::visitInsertValue and SelectionDAGBuilder::visitExtractValue where constant expressions (InsertValueConstantExpr and ExtractValueConstantExpr) would be treated as non-constant instructions (InsertValueInst and ExtractValueInst). This bug resulted in an incorrect memory access, which manifested as an assertion failure in SDValue::SDValue.
Fixes PR#33094.
Submitted on behalf of @Praetonus (Benoit Vey)
Differential Revision: https://reviews.llvm.org/D34538
llvm-svn: 307502
If we are lowering a libcall after legalization, we'll split the return type into a pair of legal values.
Patch by Jatin Bhateja and Eli Friedman.
Differential Revision: https://reviews.llvm.org/D34240
llvm-svn: 307207
Summary:
Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html
This change is to alter the prototype for the atomic memcpy intrinsic. The prototype itself is being changed to more closely resemble the semantics and parameters of the llvm.memcpy intrinsic -- to ease later combination of the llvm.memcpy and atomic memcpy intrinsics. Furthermore, the name of the atomic memcpy intrinsic is being changed to make it clear that it is not a generic atomic memcpy, but specifically a memcpy is unordered atomic.
Reviewers: reames, sanjoy, efriedma
Reviewed By: reames
Subscribers: mzolotukhin, anna, llvm-commits, skatkov
Differential Revision: https://reviews.llvm.org/D33240
llvm-svn: 305558
The code assumed that we process instructions in basic block order. FastISel
processes instructions in reverse basic block order. We need to pre-assign
virtual registers before selecting otherwise we get def-use relationships wrong.
This only affects code with swifterror registers.
rdar://32659327
llvm-svn: 305484
By target hookifying getRegisterType, getNumRegisters, getVectorBreakdown,
backends can request that LLVM to scalarize vector types for calls
and returns.
The MIPS vector ABI requires that vector arguments and returns are passed in
integer registers. With SelectionDAG's new hooks, the MIPS backend can now
handle LLVM-IR with vector types in calls and returns. E.g.
'call @foo(<4 x i32> %4)'.
Previously these cases would be scalarized for the MIPS O32/N32/N64 ABI for
calls and returns if vector types were not legal. If vector types were legal,
a single 128bit vector argument would be assigned to a single 32 bit / 64 bit
integer register.
By teaching the MIPS backend to inspect the original types, it can now
implement the MIPS vector ABI which requires a particular method of
scalarizing vectors.
Previously, the MIPS backend relied on clang to scalarize types such as "call
@foo(<4 x float> %a) into "call @foo(i32 inreg %1, i32 inreg %2, i32 inreg %3,
i32 inreg %4)".
This patch enables the MIPS backend to take either form for vector types.
The previous version of this patch had a "conditional move or jump depends on
uninitialized value".
Reviewers: zoran.jovanovic, jaydeep, vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D27845
llvm-svn: 305083
This fixes an oversight in r300522, which changed alloca
dbg.values to no longer emit a DW_OP_deref.
The array.ll testcase was regenerated from source.
Fixes PR33166:
https://bugs.llvm.org/show_bug.cgi?id=33166
llvm-svn: 303897
C++14 added user-defined literal support for complex numbers so that you can
write something like "complex<double> val = 2i". However, there is an existing
GNU extension supporting this syntax and interpreting the result as a _Complex
type.
This changes parsing so that such literals are interpreted in terms of C++14's
operators if an overload is present but otherwise falls back to the original
GNU extension.
llvm-svn: 303694
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
llvm-svn: 302925
Before r247167, the pass manager builder controlled which AA
implementations were used, exporting them all in the AliasAnalysis
analysis group.
Now, AAResultsWrapperPass always uses BasicAA, but still uses other AA
implementations if made available in the pass pipeline.
But regardless, SDAGISel is required at O0, and really doesn't need to
be doing fancy optimizations based on useful AA results.
Don't require AA at CodeGenOpt::None, and only use it otherwise.
This does have a functional impact (and one testcase is pessimized
because we can't reuse a load). But I think that's desirable no matter
what.
Note that this alone doesn't result in less DT computations: TwoAddress
was previously able to reuse the DT we computed for SDAG. That will be
fixed separately.
Differential Revision: https://reviews.llvm.org/D32766
llvm-svn: 302611
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
- This change allows targets to opt-in to using them instead of the log2
shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
factored out into LoopUtils, and now have a unified interface for generating
reductions regardless of the preference of the target. LoopUtils now uses TTI
to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.
Differential Revision: https://reviews.llvm.org/D30086
llvm-svn: 302514
This reverts commit r302461.
It appears to be causing failures compiling gtest with debug info on the
Linux sanitizer bot. I was unable to reproduce the failure locally,
however.
llvm-svn: 302504
Summary:
For inalloca functions, this is a very common code pattern:
%argpack = type <{ i32, i32, i32 }>
define void @f(%argpack* inalloca %args) {
entry:
%a = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 0
%b = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 1
%c = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 2
tail call void @llvm.dbg.declare(metadata i32* %a, ... "a")
tail call void @llvm.dbg.declare(metadata i32* %c, ... "b")
tail call void @llvm.dbg.declare(metadata i32* %b, ... "c")
Even though these GEPs can be simplified to a constant offset from EBP
or RSP, we don't do that at -O0, and each GEP is computed into a
register. Registers used to compute argument addresses are typically
spilled and clobbered very quickly after the initial computation, so
live debug variable tracking loses information very quickly if we use
DBG_VALUE instructions.
This change moves processing of dbg.declare between argument lowering
and basic block isel, so that we can ask if an argument has a frame
index or not. If the argument lives in a register as is the case for
byval arguments on some targets, then we don't put it in the side table
and during ISel we emit DBG_VALUE instructions.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32980
llvm-svn: 302483
Summary:
An llvm.dbg.declare of a static alloca is always added to the
MachineFunction dbg variable map, so these values are entirely
redundant. They survive all the way through codegen to be ignored by
DWARF emission.
Effectively revert r113967
Two bugpoint-reduced test cases from 2012 broke as a result of this
change. Despite my best efforts, I haven't been able to rewrite the test
case using dbg.value. I'm not too concerned about the lost coverage
because these were reduced from the test-suite, which we still run.
Reviewers: aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32920
llvm-svn: 302461
This patch introduces an LLVM intrinsic and a target opcode for custom event
logging in XRay. Initially, its use case will be to allow users of XRay to log
some type of string ("poor man's printf"). The target opcode compiles to a noop
sled large enough to enable calling through to a runtime-determined relative
function call. At runtime, when X-Ray is enabled, the sled is replaced by
compiler-rt with a trampoline to the logic for creating the custom log entries.
Future patches will implement the compiler-rt parts and clang-side support for
emitting the IR corresponding to this intrinsic.
Reviewers: timshen, dberris
Subscribers: igorb, pelikan, rSerge, timshen, echristo, dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D27503
llvm-svn: 302405
No functional change other than improving dbgs logging accuracy on
constant dbg values. Previously we would add things like "i32 42" as
debug values, and then log that we were dropping the debug info, which
is silly.
Delete some dead code that was checking for static allocas. This
remained after r207165, but served no purpose. Currently, static alloca
dbg.values are always sent through the DanglingDebugInfoMap, and are
usually made valid the first time the alloca is used.
llvm-svn: 302267
PR31088 demonstrated that we were assuming that only integers require promotion from <1 x iX> types, when in fact float types may require it as well - in this case half floats.
This patch adds support for extension/truncation for both integer and float types.
Differential Revision: https://reviews.llvm.org/D32391
llvm-svn: 301910
This eliminates many extra 'Idx' induction variables in loops over
arguments in CodeGen/ and Target/. It also reduces the number of places
where we assume that ReturnIndex is 0 and that we should add one to
argument numbers to get the corresponding attribute list index.
NFC
llvm-svn: 301666
Summary:
The motivation example is like below which has 13 cases but only 2 distinct targets
```
lor.lhs.false2: ; preds = %if.then
switch i32 %Status, label %if.then27 [
i32 -7012, label %if.end35
i32 -10008, label %if.end35
i32 -10016, label %if.end35
i32 15000, label %if.end35
i32 14013, label %if.end35
i32 10114, label %if.end35
i32 10107, label %if.end35
i32 10105, label %if.end35
i32 10013, label %if.end35
i32 10011, label %if.end35
i32 7008, label %if.end35
i32 7007, label %if.end35
i32 5002, label %if.end35
]
```
which is compiled into a balanced binary tree like this on AArch64 (similar on X86)
```
.LBB853_9: // %lor.lhs.false2
mov w8, #10012
cmp w19, w8
b.gt .LBB853_14
// BB#10: // %lor.lhs.false2
mov w8, #5001
cmp w19, w8
b.gt .LBB853_18
// BB#11: // %lor.lhs.false2
mov w8, #-10016
cmp w19, w8
b.eq .LBB853_23
// BB#12: // %lor.lhs.false2
mov w8, #-10008
cmp w19, w8
b.eq .LBB853_23
// BB#13: // %lor.lhs.false2
mov w8, #-7012
cmp w19, w8
b.eq .LBB853_23
b .LBB853_3
.LBB853_14: // %lor.lhs.false2
mov w8, #14012
cmp w19, w8
b.gt .LBB853_21
// BB#15: // %lor.lhs.false2
mov w8, #-10105
add w8, w19, w8
cmp w8, #9 // =9
b.hi .LBB853_17
// BB#16: // %lor.lhs.false2
orr w9, wzr, #0x1
lsl w8, w9, w8
mov w9, #517
and w8, w8, w9
cbnz w8, .LBB853_23
.LBB853_17: // %lor.lhs.false2
mov w8, #10013
cmp w19, w8
b.eq .LBB853_23
b .LBB853_3
.LBB853_18: // %lor.lhs.false2
mov w8, #-7007
add w8, w19, w8
cmp w8, #2 // =2
b.lo .LBB853_23
// BB#19: // %lor.lhs.false2
mov w8, #5002
cmp w19, w8
b.eq .LBB853_23
// BB#20: // %lor.lhs.false2
mov w8, #10011
cmp w19, w8
b.eq .LBB853_23
b .LBB853_3
.LBB853_21: // %lor.lhs.false2
mov w8, #14013
cmp w19, w8
b.eq .LBB853_23
// BB#22: // %lor.lhs.false2
mov w8, #15000
cmp w19, w8
b.ne .LBB853_3
```
However, the inline cost model estimates the cost to be linear with the number
of distinct targets and the cost of the above switch is just 2 InstrCosts.
The function containing this switch is then inlined about 900 times.
This change use the general way of switch lowering for the inline heuristic. It
etimate the number of case clusters with the suitability check for a jump table
or bit test. Considering the binary search tree built for the clusters, this
change modifies the model to be linear with the size of the balanced binary
tree. The model is off by default for now :
-inline-generic-switch-cost=false
This change was originally proposed by Haicheng in D29870.
Reviewers: hans, bmakam, chandlerc, eraman, haicheng, mcrosier
Reviewed By: hans
Subscribers: joerg, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D31085
llvm-svn: 301649
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620