This cleans up all LoadInst creation in LLVM to explicitly pass the
value type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57172
llvm-svn: 352911
This cleans up all InvokeInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57171
llvm-svn: 352910
This cleans up all CallInst creation in LLVM to explicitly pass a
function type rather than deriving it from the pointer's element-type.
Differential Revision: https://reviews.llvm.org/D57170
llvm-svn: 352909
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Records in the module summary index whether the bitcode was compiled
with the option necessary to enable splitting the LTO unit
(e.g. -fsanitize=cfi, -fwhole-program-vtables, or -fsplit-lto-unit).
The information is passed down to the ModuleSummaryIndex builder via a
new module flag "EnableSplitLTOUnit", which is propagated onto a flag
on the summary index.
This is then used during the LTO link to check whether all linked
summaries were built with the same value of this flag. If not, an error
is issued when we detect a situation requiring whole program visibility
of the class hierarchy. This is the case when both of the following
conditions are met:
1) We are performing LowerTypeTests or Whole Program Devirtualization.
2) There are type tests or type checked loads in the code.
Note I have also changed the ThinLTOBitcodeWriter to also gate the
module splitting on the value of this flag.
Reviewers: pcc
Subscribers: ormris, mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, dang, llvm-commits
Differential Revision: https://reviews.llvm.org/D53890
llvm-svn: 350948
This modifies the IPO pass so that it respects any explicit function
address space specified in the data layout.
In targets with nonzero program address spaces, all functions should, by
default, be placed into the default program address space.
This is required for Harvard architectures like AVR. Without this, the
functions will be marked as residing in data space, and thus not be
callable.
This has no effect to any in-tree official backends, as none use an
explicit program address space in their data layouts.
Patch by Tim Neumann.
llvm-svn: 349469
Summary:
Add a dominance check to ensure that the possible devirtualizable
call is actually dominated by the type test/checked load intrinsic being
analyzed. With PGO, after indirect call promotion is performed during
the compile step, followed by inlining, we may have a type test in the
promoted and inlined sequence that allows an indirect call in that
sequence to be devirtualized. That indirect call (inserted by inlining
after promotion) will share the same vtable pointer as the fallback
indirect call that cannot be devirtualized.
Before this patch the code was incorrectly devirtualizing the fallback
indirect call.
See the new test and the example described there for more details.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, Prazek, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52514
llvm-svn: 343226
Summary:
Currently only the first function in the module is checked to
see if it has remarks enabled. If that first function is a declaration,
remarks will be incorrectly skipped. Change to look for the first
non-empty function.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51556
llvm-svn: 342477
Summary:
When WPD is performed in a ThinLTO backend, the function may be created
if it isn't already in that module. Module::getOrInsertFunction may
add a bitcast, in which case the returned Constant is not a Function and
doesn't have a name. Invoke stripPointerCasts() on the returned value
where we access its name.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49959
llvm-svn: 339640
Summary:
Enable these passes for CFI and WPD in ThinLTO and LTO with the new pass
manager. Add a couple of tests for both PMs based on the clang tests
tools/clang/test/CodeGen/thinlto-distributed-cfi*.ll, but just test
through llvm-lto2 and not with distributed ThinLTO.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49429
llvm-svn: 337461
With the upcoming patch to add summary parsing support, IsAnalysis would
be true in contexts where we are not performing module summary analysis.
Rename to the more specific and approprate HaveGVs, which is essentially
what this flag is indicating.
llvm-svn: 334140
- Make eraseMetadata return whether it changed something
- Wire getMetadata for a single MDNode efficiently into the attachment
map
- Add hasMetadata, which is less weird than checking getMetadata ==
nullptr on a multimap.
Use it to simplify code.
llvm-svn: 333649
The retpoline mitigation for variant 2 of CVE-2017-5715 inhibits the
branch predictor, and as a result it can lead to a measurable loss of
performance. We can reduce the performance impact of retpolined virtual
calls by replacing them with a special construct known as a branch
funnel, which is an instruction sequence that implements virtual calls
to a set of known targets using a binary tree of direct branches. This
allows the processor to speculately execute valid implementations of the
virtual function without allowing for speculative execution of of calls
to arbitrary addresses.
This patch extends the whole-program devirtualization pass to replace
certain virtual calls with calls to branch funnels, which are
represented using a new llvm.icall.jumptable intrinsic. It also extends
the LowerTypeTests pass to recognize the new intrinsic, generate code
for the branch funnels (x86_64 only for now) and lay out virtual tables
as required for each branch funnel.
The implementation supports full LTO as well as ThinLTO, and extends the
ThinLTO summary format used for whole-program devirtualization to
support branch funnels.
For more details see RFC:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120672.html
Differential Revision: https://reviews.llvm.org/D42453
llvm-svn: 327163
Not all targets support the use of absolute symbols to export
constants. In particular, ARM has a wide variety of constant encodings
that cannot currently be relocated by linkers. So instead of exporting
the constants using symbols, export them directly in the summary.
The values of the constants are left as zeroes on targets that support
symbolic exports.
This may result in more cache misses when targeting those architectures
as a result of arbitrary changes in constant values, but this seems
somewhat unavoidable for now.
Differential Revision: https://reviews.llvm.org/D37407
llvm-svn: 312967
This is required when targeting COFF, as the comdat name must match
one of the names of the symbols in the comdat.
Differential Revision: https://reviews.llvm.org/D37550
llvm-svn: 312767
We can't reuse the llvm.assume instruction's bitcast because it may not
dominate every user of the vtable pointer.
Differential Revision: https://reviews.llvm.org/D36994
llvm-svn: 311491
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
When profiling a no-op incremental link of Chromium I found that the functions
computeImportForFunction and computeDeadSymbols were consuming roughly 10% of
the profile. The goal of this change is to improve the performance of those
functions by changing the map lookups that they were previously doing into
pointer dereferences.
This is achieved by changing the ValueInfo data structure to be a pointer to
an element of the global value map owned by ModuleSummaryIndex, and changing
reference lists in the GlobalValueSummary to hold ValueInfos instead of GUIDs.
This means that a ValueInfo will take a client directly to the summary list
for a given GUID.
Differential Revision: https://reviews.llvm.org/D32471
llvm-svn: 302108
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299949
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
llvm-svn: 299925
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.
From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.
Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>
Differential Revision: https://reviews.llvm.org/D31070
llvm-svn: 299699
Pass const qualified summaries into importers and unqualified summaries into
exporters. This lets us const-qualify the summary argument to thinBackend.
Differential Revision: https://reviews.llvm.org/D31230
llvm-svn: 298534
Add a const version of the getTypeIdSummary accessor that avoids
mutating the TypeIdMap.
Differential Revision: https://reviews.llvm.org/D31226
llvm-svn: 298531
It was introduced in:
r296945
WholeProgramDevirt: Implement exporting for single-impl devirtualization.
---------------------
r296939
WholeProgramDevirt: Add any unsuccessful llvm.type.checked.load devirtualizations to the list of llvm.type.test users.
---------------------
Microsoft Visual Studio Community 2015
Version 14.0.23107.0 D14REL
Does not compile that code without additional brackets, showing multiple error like below:
WholeProgramDevirt.cpp(1216): error C2958: the left bracket '[' found at 'c:\access_softek\llvm\lib\transforms\ipo\wholeprogramdevirt.cpp(1216)' was not matched correctly
WholeProgramDevirt.cpp(1216): error C2143: syntax error: missing ']' before '}'
WholeProgramDevirt.cpp(1216): error C2143: syntax error: missing ';' before '}'
WholeProgramDevirt.cpp(1216): error C2059: syntax error: ']'
llvm-svn: 297451
Any unsuccessful llvm.type.checked.load devirtualizations will be translated
into uses of llvm.type.test, so we need to add the resulting llvm.type.test
intrinsics to the function summaries so that the LowerTypeTests pass will
export them.
Differential Revision: https://reviews.llvm.org/D29808
llvm-svn: 296939