mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-20 03:55:48 -04:00
[LoopRotate] add ability to repeat loop rotation until non-deoptimizing exit is found
In case of loops with multiple exit where all-but-one exit are deoptimizing it might happen that the first rotation will end up with latch having a deoptimizing exit. This makes the loop unsuitable for trip-count analysis (say, getLoopEstimatedTripCount) as well as for loop transformations that know how to handle multple deoptimizing exits. It pretty much means that canonical form in multple-deoptimizing-exits case should be with non-deoptimizing exit at latch. Teach loop-rotation to reach this canonical form by repeating rotation. -loop-rotate-multi option introduced to control this behavior, currently disabled by default. Reviewers: skatkov, asbirlea, reames, fhahn Reviewed By: skatkov Tags: #llvm Differential Revision: https://reviews.llvm.org/D73058
This commit is contained in:
parent
279fa8e006
commit
2f6987ba61
@ -46,6 +46,11 @@ using namespace llvm;
|
||||
|
||||
STATISTIC(NumRotated, "Number of loops rotated");
|
||||
|
||||
static cl::opt<bool>
|
||||
MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
|
||||
cl::desc("Allow loop rotation multiple times in order to reach "
|
||||
"a better latch exit"));
|
||||
|
||||
namespace {
|
||||
/// A simple loop rotation transformation.
|
||||
class LoopRotate {
|
||||
@ -177,14 +182,16 @@ static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
|
||||
}
|
||||
}
|
||||
|
||||
// Look for a phi which is only used outside the loop (via a LCSSA phi)
|
||||
// in the exit from the header. This means that rotating the loop can
|
||||
// remove the phi.
|
||||
static bool shouldRotateLoopExitingLatch(Loop *L) {
|
||||
// Assuming both header and latch are exiting, look for a phi which is only
|
||||
// used outside the loop (via a LCSSA phi) in the exit from the header.
|
||||
// This means that rotating the loop can remove the phi.
|
||||
static bool profitableToRotateLoopExitingLatch(Loop *L) {
|
||||
BasicBlock *Header = L->getHeader();
|
||||
BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
|
||||
BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
|
||||
assert(BI && BI->isConditional() && "need header with conditional exit");
|
||||
BasicBlock *HeaderExit = BI->getSuccessor(0);
|
||||
if (L->contains(HeaderExit))
|
||||
HeaderExit = Header->getTerminator()->getSuccessor(1);
|
||||
HeaderExit = BI->getSuccessor(1);
|
||||
|
||||
for (auto &Phi : Header->phis()) {
|
||||
// Look for uses of this phi in the loop/via exits other than the header.
|
||||
@ -194,7 +201,50 @@ static bool shouldRotateLoopExitingLatch(Loop *L) {
|
||||
continue;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check that latch exit is deoptimizing (which means - very unlikely to happen)
|
||||
// and there is another exit from the loop which is non-deoptimizing.
|
||||
// If we rotate latch to that exit our loop has a better chance of being fully
|
||||
// canonical.
|
||||
//
|
||||
// It can give false positives in some rare cases.
|
||||
static bool canRotateDeoptimizingLatchExit(Loop *L) {
|
||||
BasicBlock *Latch = L->getLoopLatch();
|
||||
assert(Latch && "need latch");
|
||||
BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
|
||||
// Need normal exiting latch.
|
||||
if (!BI || !BI->isConditional())
|
||||
return false;
|
||||
|
||||
BasicBlock *Exit = BI->getSuccessor(1);
|
||||
if (L->contains(Exit))
|
||||
Exit = BI->getSuccessor(0);
|
||||
|
||||
// Latch exit is non-deoptimizing, no need to rotate.
|
||||
if (!Exit->getPostdominatingDeoptimizeCall())
|
||||
return false;
|
||||
|
||||
SmallVector<BasicBlock *, 4> Exits;
|
||||
L->getUniqueExitBlocks(Exits);
|
||||
if (!Exits.empty()) {
|
||||
// There is at least one non-deoptimizing exit.
|
||||
//
|
||||
// Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
|
||||
// as it can conservatively return false for deoptimizing exits with
|
||||
// complex enough control flow down to deoptimize call.
|
||||
//
|
||||
// That means here we can report success for a case where
|
||||
// all exits are deoptimizing but one of them has complex enough
|
||||
// control flow (e.g. with loops).
|
||||
//
|
||||
// That should be a very rare case and false positives for this function
|
||||
// have compile-time effect only.
|
||||
return any_of(Exits, [](const BasicBlock *BB) {
|
||||
return !BB->getPostdominatingDeoptimizeCall();
|
||||
});
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -208,34 +258,40 @@ static bool shouldRotateLoopExitingLatch(Loop *L) {
|
||||
/// rotation. LoopRotate should be repeatable and converge to a canonical
|
||||
/// form. This property is satisfied because simplifying the loop latch can only
|
||||
/// happen once across multiple invocations of the LoopRotate pass.
|
||||
///
|
||||
/// If -loop-rotate-multi is enabled we can do multiple rotations in one go
|
||||
/// so to reach a suitable (non-deoptimizing) exit.
|
||||
bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
|
||||
// If the loop has only one block then there is not much to rotate.
|
||||
if (L->getBlocks().size() == 1)
|
||||
return false;
|
||||
|
||||
bool Rotated = false;
|
||||
do {
|
||||
BasicBlock *OrigHeader = L->getHeader();
|
||||
BasicBlock *OrigLatch = L->getLoopLatch();
|
||||
|
||||
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
|
||||
if (!BI || BI->isUnconditional())
|
||||
return false;
|
||||
return Rotated;
|
||||
|
||||
// If the loop header is not one of the loop exiting blocks then
|
||||
// either this loop is already rotated or it is not
|
||||
// suitable for loop rotation transformations.
|
||||
if (!L->isLoopExiting(OrigHeader))
|
||||
return false;
|
||||
return Rotated;
|
||||
|
||||
// If the loop latch already contains a branch that leaves the loop then the
|
||||
// loop is already rotated.
|
||||
if (!OrigLatch)
|
||||
return false;
|
||||
return Rotated;
|
||||
|
||||
// Rotate if either the loop latch does *not* exit the loop, or if the loop
|
||||
// latch was just simplified. Or if we think it will be profitable.
|
||||
if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
|
||||
!shouldRotateLoopExitingLatch(L))
|
||||
return false;
|
||||
!profitableToRotateLoopExitingLatch(L) &&
|
||||
!canRotateDeoptimizingLatchExit(L))
|
||||
return Rotated;
|
||||
|
||||
// Check size of original header and reject loop if it is very big or we can't
|
||||
// duplicate blocks inside it.
|
||||
@ -250,16 +306,16 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
|
||||
dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
|
||||
<< " instructions: ";
|
||||
L->dump());
|
||||
return false;
|
||||
return Rotated;
|
||||
}
|
||||
if (Metrics.convergent) {
|
||||
LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
|
||||
"instructions: ";
|
||||
L->dump());
|
||||
return false;
|
||||
return Rotated;
|
||||
}
|
||||
if (Metrics.NumInsts > MaxHeaderSize)
|
||||
return false;
|
||||
return Rotated;
|
||||
}
|
||||
|
||||
// Now, this loop is suitable for rotation.
|
||||
@ -268,7 +324,7 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
|
||||
// If the loop could not be converted to canonical form, it must have an
|
||||
// indirectbr in it, just give up.
|
||||
if (!OrigPreheader || !L->hasDedicatedExits())
|
||||
return false;
|
||||
return Rotated;
|
||||
|
||||
// Anything ScalarEvolution may know about this loop or the PHI nodes
|
||||
// in its header will soon be invalidated. We should also invalidate
|
||||
@ -521,6 +577,17 @@ bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
|
||||
LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
|
||||
|
||||
++NumRotated;
|
||||
|
||||
Rotated = true;
|
||||
SimplifiedLatch = false;
|
||||
|
||||
// Check that new latch is a deoptimizing exit and then repeat rotation if possible.
|
||||
// Deoptimizing latch exit is not a generally typical case, so we just loop over.
|
||||
// TODO: if it becomes a performance bottleneck extend rotation algorithm
|
||||
// to handle multiple rotations in one go.
|
||||
} while (MultiRotate && canRotateDeoptimizingLatchExit(L));
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
165
llvm/test/Transforms/LoopRotate/multiple-deopt-exits.ll
Normal file
165
llvm/test/Transforms/LoopRotate/multiple-deopt-exits.ll
Normal file
@ -0,0 +1,165 @@
|
||||
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
||||
; RUN: opt -S < %s -loop-rotate -loop-rotate-multi=true | FileCheck %s
|
||||
; RUN: opt -S < %s -passes='loop(rotate)' -loop-rotate-multi=true | FileCheck %s
|
||||
|
||||
; Test loop rotation with multiple exits, some of them - deoptimizing.
|
||||
; We should end up with a latch which exit is non-deoptimizing, so we should rotate
|
||||
; more than once.
|
||||
|
||||
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||
|
||||
define i32 @test_cond_with_one_deopt_exit(i32 * nonnull %a, i64 %x) {
|
||||
; Rotation done twice.
|
||||
; Latch should be at the 2nd condition (for.cond2), exiting to %return.
|
||||
;
|
||||
; CHECK-LABEL: @test_cond_with_one_deopt_exit(
|
||||
; CHECK-NEXT: entry:
|
||||
; CHECK-NEXT: [[VAL_A_IDX3:%.*]] = load i32, i32* %a, align 4
|
||||
; CHECK-NEXT: [[ZERO_CHECK4:%.*]] = icmp eq i32 [[VAL_A_IDX3]], 0
|
||||
; CHECK-NEXT: br i1 [[ZERO_CHECK4]], label %deopt.exit, label %for.cond2.lr.ph
|
||||
; CHECK: for.cond2.lr.ph:
|
||||
; CHECK-NEXT: [[FOR_CHECK8:%.*]] = icmp ult i64 0, %x
|
||||
; CHECK-NEXT: br i1 [[FOR_CHECK8]], label %for.body.lr.ph, label %return
|
||||
; CHECK: for.body.lr.ph:
|
||||
; CHECK-NEXT: br label %for.body
|
||||
; CHECK: for.cond2:
|
||||
; CHECK: [[FOR_CHECK:%.*]] = icmp ult i64 {{%.*}}, %x
|
||||
; CHECK-NEXT: br i1 [[FOR_CHECK]], label %for.body, label %for.cond2.return_crit_edge
|
||||
; CHECK: for.body:
|
||||
; CHECK: br label %for.tail
|
||||
; CHECK: for.tail:
|
||||
; CHECK: [[VAL_A_IDX:%.*]] = load i32, i32*
|
||||
; CHECK-NEXT: [[ZERO_CHECK:%.*]] = icmp eq i32 [[VAL_A_IDX]], 0
|
||||
; CHECK-NEXT: br i1 [[ZERO_CHECK]], label %for.cond1.deopt.exit_crit_edge, label %for.cond2
|
||||
; CHECK: for.cond2.return_crit_edge:
|
||||
; CHECK-NEXT: {{%.*}} = phi i32
|
||||
; CHECK-NEXT: br label %return
|
||||
; CHECK: return:
|
||||
; CHECK-NEXT: [[SUM_LCSSA2:%.*]] = phi i32
|
||||
; CHECK-NEXT: ret i32 [[SUM_LCSSA2]]
|
||||
; CHECK: for.cond1.deopt.exit_crit_edge:
|
||||
; CHECK-NEXT: {{%.*}} = phi i32
|
||||
; CHECK-NEXT: br label %deopt.exit
|
||||
; CHECK: deopt.exit:
|
||||
; CHECK: [[DEOPT_VAL:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 {{%.*}}) ]
|
||||
; CHECK-NEXT: ret i32 [[DEOPT_VAL]]
|
||||
;
|
||||
entry:
|
||||
br label %for.cond1
|
||||
|
||||
for.cond1:
|
||||
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||
|
||||
for.cond2:
|
||||
%for.check = icmp ult i64 %idx, %x
|
||||
br i1 %for.check, label %for.body, label %return
|
||||
|
||||
for.body:
|
||||
br label %for.tail
|
||||
|
||||
for.tail:
|
||||
%sum.next = add i32 %sum, %val.a.idx
|
||||
%idx.next = add nuw nsw i64 %idx, 1
|
||||
br label %for.cond1
|
||||
|
||||
return:
|
||||
ret i32 %sum
|
||||
|
||||
deopt.exit:
|
||||
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||
ret i32 %deopt.val
|
||||
}
|
||||
|
||||
define i32 @test_cond_with_two_deopt_exits(i32 ** nonnull %a, i64 %x) {
|
||||
; Rotation done three times.
|
||||
; Latch should be at the 3rd condition (for.cond3), exiting to %return.
|
||||
;
|
||||
; CHECK-LABEL: @test_cond_with_two_deopt_exits(
|
||||
; CHECK-NEXT: entry:
|
||||
; CHECK-NEXT: [[A_IDX_DEREF4:%.*]] = load i32*, i32** %a
|
||||
; CHECK-NEXT: [[NULL_CHECK5:%.*]] = icmp eq i32* [[A_IDX_DEREF4]], null
|
||||
; CHECK-NEXT: br i1 [[NULL_CHECK5]], label %deopt.exit1, label %for.cond2.lr.ph
|
||||
; CHECK: for.cond2.lr.ph:
|
||||
; CHECK-NEXT: [[VAL_A_IDX9:%.*]] = load i32, i32* [[A_IDX_DEREF4]], align 4
|
||||
; CHECK-NEXT: [[ZERO_CHECK10:%.*]] = icmp eq i32 [[VAL_A_IDX9]], 0
|
||||
; CHECK-NEXT: br i1 [[ZERO_CHECK10]], label %deopt.exit2, label %for.cond3.lr.ph
|
||||
; CHECK: for.cond3.lr.ph:
|
||||
; CHECK-NEXT: [[FOR_CHECK14:%.*]] = icmp ult i64 0, %x
|
||||
; CHECK-NEXT: br i1 [[FOR_CHECK14]], label %for.body.lr.ph, label %return
|
||||
; CHECK: for.body.lr.ph:
|
||||
; CHECK-NEXT: br label %for.body
|
||||
; CHECK: for.cond2:
|
||||
; CHECK: [[VAL_A_IDX:%.*]] = load i32, i32*
|
||||
; CHECK-NEXT: [[ZERO_CHECK:%.*]] = icmp eq i32 [[VAL_A_IDX]], 0
|
||||
; CHECK-NEXT: br i1 [[ZERO_CHECK]], label %for.cond2.deopt.exit2_crit_edge, label %for.cond3
|
||||
; CHECK: for.cond3:
|
||||
; CHECK: [[FOR_CHECK:%.*]] = icmp ult i64 {{%.*}}, %x
|
||||
; CHECK-NEXT: br i1 [[FOR_CHECK]], label %for.body, label %for.cond3.return_crit_edge
|
||||
; CHECK: for.body:
|
||||
; CHECK: br label %for.tail
|
||||
; CHECK: for.tail:
|
||||
; CHECK: [[IDX_NEXT:%.*]] = add nuw nsw i64 {{%.*}}, 1
|
||||
; CHECK: [[NULL_CHECK:%.*]] = icmp eq i32* {{%.*}}, null
|
||||
; CHECK-NEXT: br i1 [[NULL_CHECK]], label %for.cond1.deopt.exit1_crit_edge, label %for.cond2
|
||||
; CHECK: for.cond3.return_crit_edge:
|
||||
; CHECK-NEXT: [[SPLIT18:%.*]] = phi i32
|
||||
; CHECK-NEXT: br label %return
|
||||
; CHECK: return:
|
||||
; CHECK-NEXT: [[SUM_LCSSA2:%.*]] = phi i32
|
||||
; CHECK-NEXT: ret i32 [[SUM_LCSSA2]]
|
||||
; CHECK: for.cond1.deopt.exit1_crit_edge:
|
||||
; CHECK-NEXT: br label %deopt.exit1
|
||||
; CHECK: deopt.exit1:
|
||||
; CHECK-NEXT: [[DEOPT_VAL1:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 0) ]
|
||||
; CHECK-NEXT: ret i32 [[DEOPT_VAL1]]
|
||||
; CHECK: for.cond2.deopt.exit2_crit_edge:
|
||||
; CHECK-NEXT: [[SPLIT:%.*]] = phi i32
|
||||
; CHECK-NEXT: br label %deopt.exit2
|
||||
; CHECK: deopt.exit2:
|
||||
; CHECK-NEXT: [[VAL_A_IDX_LCSSA:%.*]] = phi i32
|
||||
; CHECK-NEXT: [[DEOPT_VAL2:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 [[VAL_A_IDX_LCSSA]]) ]
|
||||
; CHECK-NEXT: ret i32 [[DEOPT_VAL2]]
|
||||
;
|
||||
entry:
|
||||
br label %for.cond1
|
||||
|
||||
for.cond1:
|
||||
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||
%a.idx = getelementptr inbounds i32*, i32 **%a, i64 %idx
|
||||
%a.idx.deref = load i32*, i32** %a.idx
|
||||
%null.check = icmp eq i32* %a.idx.deref, null
|
||||
br i1 %null.check, label %deopt.exit1, label %for.cond2
|
||||
|
||||
for.cond2:
|
||||
%val.a.idx = load i32, i32* %a.idx.deref, align 4
|
||||
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||
br i1 %zero.check, label %deopt.exit2, label %for.cond3
|
||||
|
||||
for.cond3:
|
||||
%for.check = icmp ult i64 %idx, %x
|
||||
br i1 %for.check, label %for.body, label %return
|
||||
|
||||
for.body:
|
||||
br label %for.tail
|
||||
|
||||
for.tail:
|
||||
%sum.next = add i32 %sum, %val.a.idx
|
||||
%idx.next = add nuw nsw i64 %idx, 1
|
||||
br label %for.cond1
|
||||
|
||||
return:
|
||||
ret i32 %sum
|
||||
|
||||
deopt.exit1:
|
||||
%deopt.val1 = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 0) ]
|
||||
ret i32 %deopt.val1
|
||||
deopt.exit2:
|
||||
%deopt.val2 = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||
ret i32 %deopt.val2
|
||||
}
|
@ -15,6 +15,7 @@ add_llvm_unittest(UtilsTests
|
||||
FunctionComparatorTest.cpp
|
||||
IntegerDivisionTest.cpp
|
||||
LocalTest.cpp
|
||||
LoopRotationUtilsTest.cpp
|
||||
LoopUtilsTest.cpp
|
||||
SizeOptsTest.cpp
|
||||
SSAUpdaterBulkTest.cpp
|
||||
|
166
llvm/unittests/Transforms/Utils/LoopRotationUtilsTest.cpp
Normal file
166
llvm/unittests/Transforms/Utils/LoopRotationUtilsTest.cpp
Normal file
@ -0,0 +1,166 @@
|
||||
//===- LoopRotationUtilsTest.cpp - Unit tests for LoopRotation utility ----===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Utils/LoopRotationUtils.h"
|
||||
#include "llvm/Analysis/AssumptionCache.h"
|
||||
#include "llvm/Analysis/InstructionSimplify.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/AsmParser/Parser.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/Support/SourceMgr.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using namespace llvm;
|
||||
|
||||
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
|
||||
SMDiagnostic Err;
|
||||
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
|
||||
if (!Mod)
|
||||
Err.print("LoopRotationUtilsTest", errs());
|
||||
return Mod;
|
||||
}
|
||||
|
||||
/// This test contains multi-deopt-exits pattern that might allow loop rotation
|
||||
/// to trigger multiple times if multiple rotations are enabled.
|
||||
/// At least one rotation should be performed, no matter what loop rotation settings are.
|
||||
TEST(LoopRotate, MultiDeoptExit) {
|
||||
LLVMContext C;
|
||||
|
||||
std::unique_ptr<Module> M = parseIR(
|
||||
C,
|
||||
R"(
|
||||
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||
|
||||
define i32 @test(i32 * nonnull %a, i64 %x) {
|
||||
entry:
|
||||
br label %for.cond1
|
||||
|
||||
for.cond1:
|
||||
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||
|
||||
for.cond2:
|
||||
%for.check = icmp ult i64 %idx, %x
|
||||
br i1 %for.check, label %for.body, label %return
|
||||
|
||||
for.body:
|
||||
br label %for.tail
|
||||
|
||||
for.tail:
|
||||
%sum.next = add i32 %sum, %val.a.idx
|
||||
%idx.next = add nuw nsw i64 %idx, 1
|
||||
br label %for.cond1
|
||||
|
||||
return:
|
||||
ret i32 %sum
|
||||
|
||||
deopt.exit:
|
||||
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||
ret i32 %deopt.val
|
||||
})"
|
||||
);
|
||||
|
||||
auto *F = M->getFunction("test");
|
||||
DominatorTree DT(*F);
|
||||
LoopInfo LI(DT);
|
||||
AssumptionCache AC(*F);
|
||||
TargetTransformInfo TTI(M->getDataLayout());
|
||||
TargetLibraryInfoImpl TLII;
|
||||
TargetLibraryInfo TLI(TLII);
|
||||
ScalarEvolution SE(*F, TLI, AC, DT, LI);
|
||||
SimplifyQuery SQ(M->getDataLayout());
|
||||
|
||||
Loop *L = *LI.begin();
|
||||
|
||||
bool ret = LoopRotation(L, &LI, &TTI,
|
||||
&AC, &DT,
|
||||
&SE, nullptr,
|
||||
SQ, true, -1, false);
|
||||
EXPECT_TRUE(ret);
|
||||
}
|
||||
|
||||
/// Checking a special case of multi-deopt exit loop that can not perform
|
||||
/// required amount of rotations due to the desired header containing
|
||||
/// non-duplicatable code.
|
||||
/// Similar to MultiDeoptExit test this one should do at least one rotation and
|
||||
/// pass no matter what loop rotation settings are.
|
||||
TEST(LoopRotate, MultiDeoptExit_Nondup) {
|
||||
LLVMContext C;
|
||||
|
||||
std::unique_ptr<Module> M = parseIR(
|
||||
C,
|
||||
R"(
|
||||
; Rotation should be done once, attempted twice.
|
||||
; Second time fails due to non-duplicatable header.
|
||||
|
||||
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||
|
||||
declare void @nondup()
|
||||
|
||||
define i32 @test_nondup(i32 * nonnull %a, i64 %x) {
|
||||
entry:
|
||||
br label %for.cond1
|
||||
|
||||
for.cond1:
|
||||
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||
|
||||
for.cond2:
|
||||
call void @nondup() noduplicate
|
||||
%for.check = icmp ult i64 %idx, %x
|
||||
br i1 %for.check, label %for.body, label %return
|
||||
|
||||
for.body:
|
||||
br label %for.tail
|
||||
|
||||
for.tail:
|
||||
%sum.next = add i32 %sum, %val.a.idx
|
||||
%idx.next = add nuw nsw i64 %idx, 1
|
||||
br label %for.cond1
|
||||
|
||||
return:
|
||||
ret i32 %sum
|
||||
|
||||
deopt.exit:
|
||||
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||
ret i32 %deopt.val
|
||||
})"
|
||||
);
|
||||
|
||||
auto *F = M->getFunction("test_nondup");
|
||||
DominatorTree DT(*F);
|
||||
LoopInfo LI(DT);
|
||||
AssumptionCache AC(*F);
|
||||
TargetTransformInfo TTI(M->getDataLayout());
|
||||
TargetLibraryInfoImpl TLII;
|
||||
TargetLibraryInfo TLI(TLII);
|
||||
ScalarEvolution SE(*F, TLI, AC, DT, LI);
|
||||
SimplifyQuery SQ(M->getDataLayout());
|
||||
|
||||
Loop *L = *LI.begin();
|
||||
|
||||
bool ret = LoopRotation(L, &LI, &TTI,
|
||||
&AC, &DT,
|
||||
&SE, nullptr,
|
||||
SQ, true, -1, false);
|
||||
/// LoopRotation should properly report "true" as we still perform the first rotation
|
||||
/// so we do change the IR.
|
||||
EXPECT_TRUE(ret);
|
||||
}
|
Loading…
Reference in New Issue
Block a user