mirror of
https://github.com/Gericom/teak-llvm.git
synced 2025-06-19 19:45:40 -04:00
[LoopRotate] add ability to repeat loop rotation until non-deoptimizing exit is found
In case of loops with multiple exit where all-but-one exit are deoptimizing it might happen that the first rotation will end up with latch having a deoptimizing exit. This makes the loop unsuitable for trip-count analysis (say, getLoopEstimatedTripCount) as well as for loop transformations that know how to handle multple deoptimizing exits. It pretty much means that canonical form in multple-deoptimizing-exits case should be with non-deoptimizing exit at latch. Teach loop-rotation to reach this canonical form by repeating rotation. -loop-rotate-multi option introduced to control this behavior, currently disabled by default. Reviewers: skatkov, asbirlea, reames, fhahn Reviewed By: skatkov Tags: #llvm Differential Revision: https://reviews.llvm.org/D73058
This commit is contained in:
parent
279fa8e006
commit
2f6987ba61
@ -46,6 +46,11 @@ using namespace llvm;
|
|||||||
|
|
||||||
STATISTIC(NumRotated, "Number of loops rotated");
|
STATISTIC(NumRotated, "Number of loops rotated");
|
||||||
|
|
||||||
|
static cl::opt<bool>
|
||||||
|
MultiRotate("loop-rotate-multi", cl::init(false), cl::Hidden,
|
||||||
|
cl::desc("Allow loop rotation multiple times in order to reach "
|
||||||
|
"a better latch exit"));
|
||||||
|
|
||||||
namespace {
|
namespace {
|
||||||
/// A simple loop rotation transformation.
|
/// A simple loop rotation transformation.
|
||||||
class LoopRotate {
|
class LoopRotate {
|
||||||
@ -177,14 +182,16 @@ static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Look for a phi which is only used outside the loop (via a LCSSA phi)
|
// Assuming both header and latch are exiting, look for a phi which is only
|
||||||
// in the exit from the header. This means that rotating the loop can
|
// used outside the loop (via a LCSSA phi) in the exit from the header.
|
||||||
// remove the phi.
|
// This means that rotating the loop can remove the phi.
|
||||||
static bool shouldRotateLoopExitingLatch(Loop *L) {
|
static bool profitableToRotateLoopExitingLatch(Loop *L) {
|
||||||
BasicBlock *Header = L->getHeader();
|
BasicBlock *Header = L->getHeader();
|
||||||
BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
|
BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator());
|
||||||
|
assert(BI && BI->isConditional() && "need header with conditional exit");
|
||||||
|
BasicBlock *HeaderExit = BI->getSuccessor(0);
|
||||||
if (L->contains(HeaderExit))
|
if (L->contains(HeaderExit))
|
||||||
HeaderExit = Header->getTerminator()->getSuccessor(1);
|
HeaderExit = BI->getSuccessor(1);
|
||||||
|
|
||||||
for (auto &Phi : Header->phis()) {
|
for (auto &Phi : Header->phis()) {
|
||||||
// Look for uses of this phi in the loop/via exits other than the header.
|
// Look for uses of this phi in the loop/via exits other than the header.
|
||||||
@ -194,7 +201,50 @@ static bool shouldRotateLoopExitingLatch(Loop *L) {
|
|||||||
continue;
|
continue;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check that latch exit is deoptimizing (which means - very unlikely to happen)
|
||||||
|
// and there is another exit from the loop which is non-deoptimizing.
|
||||||
|
// If we rotate latch to that exit our loop has a better chance of being fully
|
||||||
|
// canonical.
|
||||||
|
//
|
||||||
|
// It can give false positives in some rare cases.
|
||||||
|
static bool canRotateDeoptimizingLatchExit(Loop *L) {
|
||||||
|
BasicBlock *Latch = L->getLoopLatch();
|
||||||
|
assert(Latch && "need latch");
|
||||||
|
BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
|
||||||
|
// Need normal exiting latch.
|
||||||
|
if (!BI || !BI->isConditional())
|
||||||
|
return false;
|
||||||
|
|
||||||
|
BasicBlock *Exit = BI->getSuccessor(1);
|
||||||
|
if (L->contains(Exit))
|
||||||
|
Exit = BI->getSuccessor(0);
|
||||||
|
|
||||||
|
// Latch exit is non-deoptimizing, no need to rotate.
|
||||||
|
if (!Exit->getPostdominatingDeoptimizeCall())
|
||||||
|
return false;
|
||||||
|
|
||||||
|
SmallVector<BasicBlock *, 4> Exits;
|
||||||
|
L->getUniqueExitBlocks(Exits);
|
||||||
|
if (!Exits.empty()) {
|
||||||
|
// There is at least one non-deoptimizing exit.
|
||||||
|
//
|
||||||
|
// Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact,
|
||||||
|
// as it can conservatively return false for deoptimizing exits with
|
||||||
|
// complex enough control flow down to deoptimize call.
|
||||||
|
//
|
||||||
|
// That means here we can report success for a case where
|
||||||
|
// all exits are deoptimizing but one of them has complex enough
|
||||||
|
// control flow (e.g. with loops).
|
||||||
|
//
|
||||||
|
// That should be a very rare case and false positives for this function
|
||||||
|
// have compile-time effect only.
|
||||||
|
return any_of(Exits, [](const BasicBlock *BB) {
|
||||||
|
return !BB->getPostdominatingDeoptimizeCall();
|
||||||
|
});
|
||||||
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -208,319 +258,336 @@ static bool shouldRotateLoopExitingLatch(Loop *L) {
|
|||||||
/// rotation. LoopRotate should be repeatable and converge to a canonical
|
/// rotation. LoopRotate should be repeatable and converge to a canonical
|
||||||
/// form. This property is satisfied because simplifying the loop latch can only
|
/// form. This property is satisfied because simplifying the loop latch can only
|
||||||
/// happen once across multiple invocations of the LoopRotate pass.
|
/// happen once across multiple invocations of the LoopRotate pass.
|
||||||
|
///
|
||||||
|
/// If -loop-rotate-multi is enabled we can do multiple rotations in one go
|
||||||
|
/// so to reach a suitable (non-deoptimizing) exit.
|
||||||
bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
|
bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
|
||||||
// If the loop has only one block then there is not much to rotate.
|
// If the loop has only one block then there is not much to rotate.
|
||||||
if (L->getBlocks().size() == 1)
|
if (L->getBlocks().size() == 1)
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
BasicBlock *OrigHeader = L->getHeader();
|
bool Rotated = false;
|
||||||
BasicBlock *OrigLatch = L->getLoopLatch();
|
do {
|
||||||
|
BasicBlock *OrigHeader = L->getHeader();
|
||||||
|
BasicBlock *OrigLatch = L->getLoopLatch();
|
||||||
|
|
||||||
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
|
BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
|
||||||
if (!BI || BI->isUnconditional())
|
if (!BI || BI->isUnconditional())
|
||||||
return false;
|
return Rotated;
|
||||||
|
|
||||||
// If the loop header is not one of the loop exiting blocks then
|
// If the loop header is not one of the loop exiting blocks then
|
||||||
// either this loop is already rotated or it is not
|
// either this loop is already rotated or it is not
|
||||||
// suitable for loop rotation transformations.
|
// suitable for loop rotation transformations.
|
||||||
if (!L->isLoopExiting(OrigHeader))
|
if (!L->isLoopExiting(OrigHeader))
|
||||||
return false;
|
return Rotated;
|
||||||
|
|
||||||
// If the loop latch already contains a branch that leaves the loop then the
|
// If the loop latch already contains a branch that leaves the loop then the
|
||||||
// loop is already rotated.
|
// loop is already rotated.
|
||||||
if (!OrigLatch)
|
if (!OrigLatch)
|
||||||
return false;
|
return Rotated;
|
||||||
|
|
||||||
// Rotate if either the loop latch does *not* exit the loop, or if the loop
|
// Rotate if either the loop latch does *not* exit the loop, or if the loop
|
||||||
// latch was just simplified. Or if we think it will be profitable.
|
// latch was just simplified. Or if we think it will be profitable.
|
||||||
if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
|
if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
|
||||||
!shouldRotateLoopExitingLatch(L))
|
!profitableToRotateLoopExitingLatch(L) &&
|
||||||
return false;
|
!canRotateDeoptimizingLatchExit(L))
|
||||||
|
return Rotated;
|
||||||
|
|
||||||
// Check size of original header and reject loop if it is very big or we can't
|
// Check size of original header and reject loop if it is very big or we can't
|
||||||
// duplicate blocks inside it.
|
// duplicate blocks inside it.
|
||||||
{
|
{
|
||||||
SmallPtrSet<const Value *, 32> EphValues;
|
SmallPtrSet<const Value *, 32> EphValues;
|
||||||
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
|
CodeMetrics::collectEphemeralValues(L, AC, EphValues);
|
||||||
|
|
||||||
CodeMetrics Metrics;
|
CodeMetrics Metrics;
|
||||||
Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
|
Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
|
||||||
if (Metrics.notDuplicatable) {
|
if (Metrics.notDuplicatable) {
|
||||||
LLVM_DEBUG(
|
LLVM_DEBUG(
|
||||||
dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
|
dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
|
||||||
<< " instructions: ";
|
<< " instructions: ";
|
||||||
L->dump());
|
L->dump());
|
||||||
return false;
|
return Rotated;
|
||||||
|
}
|
||||||
|
if (Metrics.convergent) {
|
||||||
|
LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
|
||||||
|
"instructions: ";
|
||||||
|
L->dump());
|
||||||
|
return Rotated;
|
||||||
|
}
|
||||||
|
if (Metrics.NumInsts > MaxHeaderSize)
|
||||||
|
return Rotated;
|
||||||
}
|
}
|
||||||
if (Metrics.convergent) {
|
|
||||||
LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
|
|
||||||
"instructions: ";
|
|
||||||
L->dump());
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
if (Metrics.NumInsts > MaxHeaderSize)
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Now, this loop is suitable for rotation.
|
// Now, this loop is suitable for rotation.
|
||||||
BasicBlock *OrigPreheader = L->getLoopPreheader();
|
BasicBlock *OrigPreheader = L->getLoopPreheader();
|
||||||
|
|
||||||
// If the loop could not be converted to canonical form, it must have an
|
// If the loop could not be converted to canonical form, it must have an
|
||||||
// indirectbr in it, just give up.
|
// indirectbr in it, just give up.
|
||||||
if (!OrigPreheader || !L->hasDedicatedExits())
|
if (!OrigPreheader || !L->hasDedicatedExits())
|
||||||
return false;
|
return Rotated;
|
||||||
|
|
||||||
// Anything ScalarEvolution may know about this loop or the PHI nodes
|
// Anything ScalarEvolution may know about this loop or the PHI nodes
|
||||||
// in its header will soon be invalidated. We should also invalidate
|
// in its header will soon be invalidated. We should also invalidate
|
||||||
// all outer loops because insertion and deletion of blocks that happens
|
// all outer loops because insertion and deletion of blocks that happens
|
||||||
// during the rotation may violate invariants related to backedge taken
|
// during the rotation may violate invariants related to backedge taken
|
||||||
// infos in them.
|
// infos in them.
|
||||||
if (SE)
|
if (SE)
|
||||||
SE->forgetTopmostLoop(L);
|
SE->forgetTopmostLoop(L);
|
||||||
|
|
||||||
LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
|
LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
|
||||||
if (MSSAU && VerifyMemorySSA)
|
if (MSSAU && VerifyMemorySSA)
|
||||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||||
|
|
||||||
// Find new Loop header. NewHeader is a Header's one and only successor
|
// Find new Loop header. NewHeader is a Header's one and only successor
|
||||||
// that is inside loop. Header's other successor is outside the
|
// that is inside loop. Header's other successor is outside the
|
||||||
// loop. Otherwise loop is not suitable for rotation.
|
// loop. Otherwise loop is not suitable for rotation.
|
||||||
BasicBlock *Exit = BI->getSuccessor(0);
|
BasicBlock *Exit = BI->getSuccessor(0);
|
||||||
BasicBlock *NewHeader = BI->getSuccessor(1);
|
BasicBlock *NewHeader = BI->getSuccessor(1);
|
||||||
if (L->contains(Exit))
|
if (L->contains(Exit))
|
||||||
std::swap(Exit, NewHeader);
|
std::swap(Exit, NewHeader);
|
||||||
assert(NewHeader && "Unable to determine new loop header");
|
assert(NewHeader && "Unable to determine new loop header");
|
||||||
assert(L->contains(NewHeader) && !L->contains(Exit) &&
|
assert(L->contains(NewHeader) && !L->contains(Exit) &&
|
||||||
"Unable to determine loop header and exit blocks");
|
"Unable to determine loop header and exit blocks");
|
||||||
|
|
||||||
// This code assumes that the new header has exactly one predecessor.
|
// This code assumes that the new header has exactly one predecessor.
|
||||||
// Remove any single-entry PHI nodes in it.
|
// Remove any single-entry PHI nodes in it.
|
||||||
assert(NewHeader->getSinglePredecessor() &&
|
assert(NewHeader->getSinglePredecessor() &&
|
||||||
"New header doesn't have one pred!");
|
"New header doesn't have one pred!");
|
||||||
FoldSingleEntryPHINodes(NewHeader);
|
FoldSingleEntryPHINodes(NewHeader);
|
||||||
|
|
||||||
// Begin by walking OrigHeader and populating ValueMap with an entry for
|
// Begin by walking OrigHeader and populating ValueMap with an entry for
|
||||||
// each Instruction.
|
// each Instruction.
|
||||||
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
|
BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
|
||||||
ValueToValueMapTy ValueMap, ValueMapMSSA;
|
ValueToValueMapTy ValueMap, ValueMapMSSA;
|
||||||
|
|
||||||
// For PHI nodes, the value available in OldPreHeader is just the
|
// For PHI nodes, the value available in OldPreHeader is just the
|
||||||
// incoming value from OldPreHeader.
|
// incoming value from OldPreHeader.
|
||||||
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
|
||||||
InsertNewValueIntoMap(ValueMap, PN,
|
InsertNewValueIntoMap(ValueMap, PN,
|
||||||
PN->getIncomingValueForBlock(OrigPreheader));
|
PN->getIncomingValueForBlock(OrigPreheader));
|
||||||
|
|
||||||
// For the rest of the instructions, either hoist to the OrigPreheader if
|
// For the rest of the instructions, either hoist to the OrigPreheader if
|
||||||
// possible or create a clone in the OldPreHeader if not.
|
// possible or create a clone in the OldPreHeader if not.
|
||||||
Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
|
Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
|
||||||
|
|
||||||
// Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
|
// Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
|
||||||
using DbgIntrinsicHash =
|
using DbgIntrinsicHash =
|
||||||
std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
|
std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
|
||||||
auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
|
auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
|
||||||
return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
|
return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
|
||||||
};
|
};
|
||||||
SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
|
SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
|
||||||
for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
|
for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
|
||||||
I != E; ++I) {
|
I != E; ++I) {
|
||||||
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
|
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
|
||||||
DbgIntrinsics.insert(makeHash(DII));
|
DbgIntrinsics.insert(makeHash(DII));
|
||||||
else
|
else
|
||||||
break;
|
break;
|
||||||
}
|
|
||||||
|
|
||||||
while (I != E) {
|
|
||||||
Instruction *Inst = &*I++;
|
|
||||||
|
|
||||||
// If the instruction's operands are invariant and it doesn't read or write
|
|
||||||
// memory, then it is safe to hoist. Doing this doesn't change the order of
|
|
||||||
// execution in the preheader, but does prevent the instruction from
|
|
||||||
// executing in each iteration of the loop. This means it is safe to hoist
|
|
||||||
// something that might trap, but isn't safe to hoist something that reads
|
|
||||||
// memory (without proving that the loop doesn't write).
|
|
||||||
if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
|
|
||||||
!Inst->mayWriteToMemory() && !Inst->isTerminator() &&
|
|
||||||
!isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
|
|
||||||
Inst->moveBefore(LoopEntryBranch);
|
|
||||||
continue;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Otherwise, create a duplicate of the instruction.
|
while (I != E) {
|
||||||
Instruction *C = Inst->clone();
|
Instruction *Inst = &*I++;
|
||||||
|
|
||||||
// Eagerly remap the operands of the instruction.
|
// If the instruction's operands are invariant and it doesn't read or write
|
||||||
RemapInstruction(C, ValueMap,
|
// memory, then it is safe to hoist. Doing this doesn't change the order of
|
||||||
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
|
// execution in the preheader, but does prevent the instruction from
|
||||||
|
// executing in each iteration of the loop. This means it is safe to hoist
|
||||||
// Avoid inserting the same intrinsic twice.
|
// something that might trap, but isn't safe to hoist something that reads
|
||||||
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
|
// memory (without proving that the loop doesn't write).
|
||||||
if (DbgIntrinsics.count(makeHash(DII))) {
|
if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
|
||||||
C->deleteValue();
|
!Inst->mayWriteToMemory() && !Inst->isTerminator() &&
|
||||||
|
!isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
|
||||||
|
Inst->moveBefore(LoopEntryBranch);
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
// With the operands remapped, see if the instruction constant folds or is
|
// Otherwise, create a duplicate of the instruction.
|
||||||
// otherwise simplifyable. This commonly occurs because the entry from PHI
|
Instruction *C = Inst->clone();
|
||||||
// nodes allows icmps and other instructions to fold.
|
|
||||||
Value *V = SimplifyInstruction(C, SQ);
|
// Eagerly remap the operands of the instruction.
|
||||||
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
|
RemapInstruction(C, ValueMap,
|
||||||
// If so, then delete the temporary instruction and stick the folded value
|
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
|
||||||
// in the map.
|
|
||||||
InsertNewValueIntoMap(ValueMap, Inst, V);
|
// Avoid inserting the same intrinsic twice.
|
||||||
if (!C->mayHaveSideEffects()) {
|
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
|
||||||
C->deleteValue();
|
if (DbgIntrinsics.count(makeHash(DII))) {
|
||||||
C = nullptr;
|
C->deleteValue();
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// With the operands remapped, see if the instruction constant folds or is
|
||||||
|
// otherwise simplifyable. This commonly occurs because the entry from PHI
|
||||||
|
// nodes allows icmps and other instructions to fold.
|
||||||
|
Value *V = SimplifyInstruction(C, SQ);
|
||||||
|
if (V && LI->replacementPreservesLCSSAForm(C, V)) {
|
||||||
|
// If so, then delete the temporary instruction and stick the folded value
|
||||||
|
// in the map.
|
||||||
|
InsertNewValueIntoMap(ValueMap, Inst, V);
|
||||||
|
if (!C->mayHaveSideEffects()) {
|
||||||
|
C->deleteValue();
|
||||||
|
C = nullptr;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
InsertNewValueIntoMap(ValueMap, Inst, C);
|
||||||
|
}
|
||||||
|
if (C) {
|
||||||
|
// Otherwise, stick the new instruction into the new block!
|
||||||
|
C->setName(Inst->getName());
|
||||||
|
C->insertBefore(LoopEntryBranch);
|
||||||
|
|
||||||
|
if (auto *II = dyn_cast<IntrinsicInst>(C))
|
||||||
|
if (II->getIntrinsicID() == Intrinsic::assume)
|
||||||
|
AC->registerAssumption(II);
|
||||||
|
// MemorySSA cares whether the cloned instruction was inserted or not, and
|
||||||
|
// not whether it can be remapped to a simplified value.
|
||||||
|
if (MSSAU)
|
||||||
|
InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
|
||||||
}
|
}
|
||||||
} else {
|
|
||||||
InsertNewValueIntoMap(ValueMap, Inst, C);
|
|
||||||
}
|
}
|
||||||
if (C) {
|
|
||||||
// Otherwise, stick the new instruction into the new block!
|
|
||||||
C->setName(Inst->getName());
|
|
||||||
C->insertBefore(LoopEntryBranch);
|
|
||||||
|
|
||||||
if (auto *II = dyn_cast<IntrinsicInst>(C))
|
// Along with all the other instructions, we just cloned OrigHeader's
|
||||||
if (II->getIntrinsicID() == Intrinsic::assume)
|
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
|
||||||
AC->registerAssumption(II);
|
// successors by duplicating their incoming values for OrigHeader.
|
||||||
// MemorySSA cares whether the cloned instruction was inserted or not, and
|
for (BasicBlock *SuccBB : successors(OrigHeader))
|
||||||
// not whether it can be remapped to a simplified value.
|
for (BasicBlock::iterator BI = SuccBB->begin();
|
||||||
if (MSSAU)
|
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
||||||
InsertNewValueIntoMap(ValueMapMSSA, Inst, C);
|
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Along with all the other instructions, we just cloned OrigHeader's
|
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
|
||||||
// terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
|
// OrigPreHeader's old terminator (the original branch into the loop), and
|
||||||
// successors by duplicating their incoming values for OrigHeader.
|
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
|
||||||
for (BasicBlock *SuccBB : successors(OrigHeader))
|
LoopEntryBranch->eraseFromParent();
|
||||||
for (BasicBlock::iterator BI = SuccBB->begin();
|
|
||||||
PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
|
|
||||||
PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
|
|
||||||
|
|
||||||
// Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
|
|
||||||
// OrigPreHeader's old terminator (the original branch into the loop), and
|
|
||||||
// remove the corresponding incoming values from the PHI nodes in OrigHeader.
|
|
||||||
LoopEntryBranch->eraseFromParent();
|
|
||||||
|
|
||||||
// Update MemorySSA before the rewrite call below changes the 1:1
|
|
||||||
// instruction:cloned_instruction_or_value mapping.
|
|
||||||
if (MSSAU) {
|
|
||||||
InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
|
|
||||||
MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
|
|
||||||
ValueMapMSSA);
|
|
||||||
}
|
|
||||||
|
|
||||||
SmallVector<PHINode*, 2> InsertedPHIs;
|
|
||||||
// If there were any uses of instructions in the duplicated block outside the
|
|
||||||
// loop, update them, inserting PHI nodes as required
|
|
||||||
RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
|
|
||||||
&InsertedPHIs);
|
|
||||||
|
|
||||||
// Attach dbg.value intrinsics to the new phis if that phi uses a value that
|
|
||||||
// previously had debug metadata attached. This keeps the debug info
|
|
||||||
// up-to-date in the loop body.
|
|
||||||
if (!InsertedPHIs.empty())
|
|
||||||
insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
|
|
||||||
|
|
||||||
// NewHeader is now the header of the loop.
|
|
||||||
L->moveToHeader(NewHeader);
|
|
||||||
assert(L->getHeader() == NewHeader && "Latch block is our new header");
|
|
||||||
|
|
||||||
// Inform DT about changes to the CFG.
|
|
||||||
if (DT) {
|
|
||||||
// The OrigPreheader branches to the NewHeader and Exit now. Then, inform
|
|
||||||
// the DT about the removed edge to the OrigHeader (that got removed).
|
|
||||||
SmallVector<DominatorTree::UpdateType, 3> Updates;
|
|
||||||
Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
|
|
||||||
Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
|
|
||||||
Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
|
|
||||||
DT->applyUpdates(Updates);
|
|
||||||
|
|
||||||
|
// Update MemorySSA before the rewrite call below changes the 1:1
|
||||||
|
// instruction:cloned_instruction_or_value mapping.
|
||||||
if (MSSAU) {
|
if (MSSAU) {
|
||||||
MSSAU->applyUpdates(Updates, *DT);
|
InsertNewValueIntoMap(ValueMapMSSA, OrigHeader, OrigPreheader);
|
||||||
if (VerifyMemorySSA)
|
MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
|
||||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
ValueMapMSSA);
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
// At this point, we've finished our major CFG changes. As part of cloning
|
SmallVector<PHINode*, 2> InsertedPHIs;
|
||||||
// the loop into the preheader we've simplified instructions and the
|
// If there were any uses of instructions in the duplicated block outside the
|
||||||
// duplicated conditional branch may now be branching on a constant. If it is
|
// loop, update them, inserting PHI nodes as required
|
||||||
// branching on a constant and if that constant means that we enter the loop,
|
RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
|
||||||
// then we fold away the cond branch to an uncond branch. This simplifies the
|
&InsertedPHIs);
|
||||||
// loop in cases important for nested loops, and it also means we don't have
|
|
||||||
// to split as many edges.
|
|
||||||
BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
|
|
||||||
assert(PHBI->isConditional() && "Should be clone of BI condbr!");
|
|
||||||
if (!isa<ConstantInt>(PHBI->getCondition()) ||
|
|
||||||
PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
|
|
||||||
NewHeader) {
|
|
||||||
// The conditional branch can't be folded, handle the general case.
|
|
||||||
// Split edges as necessary to preserve LoopSimplify form.
|
|
||||||
|
|
||||||
// Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
|
// Attach dbg.value intrinsics to the new phis if that phi uses a value that
|
||||||
// thus is not a preheader anymore.
|
// previously had debug metadata attached. This keeps the debug info
|
||||||
// Split the edge to form a real preheader.
|
// up-to-date in the loop body.
|
||||||
BasicBlock *NewPH = SplitCriticalEdge(
|
if (!InsertedPHIs.empty())
|
||||||
OrigPreheader, NewHeader,
|
insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
|
||||||
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
|
|
||||||
NewPH->setName(NewHeader->getName() + ".lr.ph");
|
|
||||||
|
|
||||||
// Preserve canonical loop form, which means that 'Exit' should have only
|
// NewHeader is now the header of the loop.
|
||||||
// one predecessor. Note that Exit could be an exit block for multiple
|
L->moveToHeader(NewHeader);
|
||||||
// nested loops, causing both of the edges to now be critical and need to
|
assert(L->getHeader() == NewHeader && "Latch block is our new header");
|
||||||
// be split.
|
|
||||||
SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
|
// Inform DT about changes to the CFG.
|
||||||
bool SplitLatchEdge = false;
|
if (DT) {
|
||||||
for (BasicBlock *ExitPred : ExitPreds) {
|
// The OrigPreheader branches to the NewHeader and Exit now. Then, inform
|
||||||
// We only need to split loop exit edges.
|
// the DT about the removed edge to the OrigHeader (that got removed).
|
||||||
Loop *PredLoop = LI->getLoopFor(ExitPred);
|
SmallVector<DominatorTree::UpdateType, 3> Updates;
|
||||||
if (!PredLoop || PredLoop->contains(Exit) ||
|
Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
|
||||||
ExitPred->getTerminator()->isIndirectTerminator())
|
Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
|
||||||
continue;
|
Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
|
||||||
SplitLatchEdge |= L->getLoopLatch() == ExitPred;
|
DT->applyUpdates(Updates);
|
||||||
BasicBlock *ExitSplit = SplitCriticalEdge(
|
|
||||||
ExitPred, Exit,
|
if (MSSAU) {
|
||||||
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
|
MSSAU->applyUpdates(Updates, *DT);
|
||||||
ExitSplit->moveBefore(Exit);
|
if (VerifyMemorySSA)
|
||||||
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
assert(SplitLatchEdge &&
|
|
||||||
"Despite splitting all preds, failed to split latch exit?");
|
|
||||||
} else {
|
|
||||||
// We can fold the conditional branch in the preheader, this makes things
|
|
||||||
// simpler. The first step is to remove the extra edge to the Exit block.
|
|
||||||
Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
|
|
||||||
BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
|
|
||||||
NewBI->setDebugLoc(PHBI->getDebugLoc());
|
|
||||||
PHBI->eraseFromParent();
|
|
||||||
|
|
||||||
// With our CFG finalized, update DomTree if it is available.
|
// At this point, we've finished our major CFG changes. As part of cloning
|
||||||
if (DT) DT->deleteEdge(OrigPreheader, Exit);
|
// the loop into the preheader we've simplified instructions and the
|
||||||
|
// duplicated conditional branch may now be branching on a constant. If it is
|
||||||
|
// branching on a constant and if that constant means that we enter the loop,
|
||||||
|
// then we fold away the cond branch to an uncond branch. This simplifies the
|
||||||
|
// loop in cases important for nested loops, and it also means we don't have
|
||||||
|
// to split as many edges.
|
||||||
|
BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
|
||||||
|
assert(PHBI->isConditional() && "Should be clone of BI condbr!");
|
||||||
|
if (!isa<ConstantInt>(PHBI->getCondition()) ||
|
||||||
|
PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
|
||||||
|
NewHeader) {
|
||||||
|
// The conditional branch can't be folded, handle the general case.
|
||||||
|
// Split edges as necessary to preserve LoopSimplify form.
|
||||||
|
|
||||||
// Update MSSA too, if available.
|
// Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
|
||||||
if (MSSAU)
|
// thus is not a preheader anymore.
|
||||||
MSSAU->removeEdge(OrigPreheader, Exit);
|
// Split the edge to form a real preheader.
|
||||||
}
|
BasicBlock *NewPH = SplitCriticalEdge(
|
||||||
|
OrigPreheader, NewHeader,
|
||||||
|
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
|
||||||
|
NewPH->setName(NewHeader->getName() + ".lr.ph");
|
||||||
|
|
||||||
assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
|
// Preserve canonical loop form, which means that 'Exit' should have only
|
||||||
assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
|
// one predecessor. Note that Exit could be an exit block for multiple
|
||||||
|
// nested loops, causing both of the edges to now be critical and need to
|
||||||
|
// be split.
|
||||||
|
SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
|
||||||
|
bool SplitLatchEdge = false;
|
||||||
|
for (BasicBlock *ExitPred : ExitPreds) {
|
||||||
|
// We only need to split loop exit edges.
|
||||||
|
Loop *PredLoop = LI->getLoopFor(ExitPred);
|
||||||
|
if (!PredLoop || PredLoop->contains(Exit) ||
|
||||||
|
ExitPred->getTerminator()->isIndirectTerminator())
|
||||||
|
continue;
|
||||||
|
SplitLatchEdge |= L->getLoopLatch() == ExitPred;
|
||||||
|
BasicBlock *ExitSplit = SplitCriticalEdge(
|
||||||
|
ExitPred, Exit,
|
||||||
|
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
|
||||||
|
ExitSplit->moveBefore(Exit);
|
||||||
|
}
|
||||||
|
assert(SplitLatchEdge &&
|
||||||
|
"Despite splitting all preds, failed to split latch exit?");
|
||||||
|
} else {
|
||||||
|
// We can fold the conditional branch in the preheader, this makes things
|
||||||
|
// simpler. The first step is to remove the extra edge to the Exit block.
|
||||||
|
Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
|
||||||
|
BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
|
||||||
|
NewBI->setDebugLoc(PHBI->getDebugLoc());
|
||||||
|
PHBI->eraseFromParent();
|
||||||
|
|
||||||
if (MSSAU && VerifyMemorySSA)
|
// With our CFG finalized, update DomTree if it is available.
|
||||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
if (DT) DT->deleteEdge(OrigPreheader, Exit);
|
||||||
|
|
||||||
// Now that the CFG and DomTree are in a consistent state again, try to merge
|
// Update MSSA too, if available.
|
||||||
// the OrigHeader block into OrigLatch. This will succeed if they are
|
if (MSSAU)
|
||||||
// connected by an unconditional branch. This is just a cleanup so the
|
MSSAU->removeEdge(OrigPreheader, Exit);
|
||||||
// emitted code isn't too gross in this common case.
|
}
|
||||||
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
||||||
MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
|
|
||||||
|
|
||||||
if (MSSAU && VerifyMemorySSA)
|
assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
|
||||||
MSSAU->getMemorySSA()->verifyMemorySSA();
|
assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
|
||||||
|
|
||||||
|
if (MSSAU && VerifyMemorySSA)
|
||||||
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||||
|
|
||||||
|
// Now that the CFG and DomTree are in a consistent state again, try to merge
|
||||||
|
// the OrigHeader block into OrigLatch. This will succeed if they are
|
||||||
|
// connected by an unconditional branch. This is just a cleanup so the
|
||||||
|
// emitted code isn't too gross in this common case.
|
||||||
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
||||||
|
MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
|
||||||
|
|
||||||
|
if (MSSAU && VerifyMemorySSA)
|
||||||
|
MSSAU->getMemorySSA()->verifyMemorySSA();
|
||||||
|
|
||||||
|
LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
|
||||||
|
|
||||||
|
++NumRotated;
|
||||||
|
|
||||||
|
Rotated = true;
|
||||||
|
SimplifiedLatch = false;
|
||||||
|
|
||||||
|
// Check that new latch is a deoptimizing exit and then repeat rotation if possible.
|
||||||
|
// Deoptimizing latch exit is not a generally typical case, so we just loop over.
|
||||||
|
// TODO: if it becomes a performance bottleneck extend rotation algorithm
|
||||||
|
// to handle multiple rotations in one go.
|
||||||
|
} while (MultiRotate && canRotateDeoptimizingLatchExit(L));
|
||||||
|
|
||||||
LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
|
|
||||||
|
|
||||||
++NumRotated;
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
165
llvm/test/Transforms/LoopRotate/multiple-deopt-exits.ll
Normal file
165
llvm/test/Transforms/LoopRotate/multiple-deopt-exits.ll
Normal file
@ -0,0 +1,165 @@
|
|||||||
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
|
||||||
|
; RUN: opt -S < %s -loop-rotate -loop-rotate-multi=true | FileCheck %s
|
||||||
|
; RUN: opt -S < %s -passes='loop(rotate)' -loop-rotate-multi=true | FileCheck %s
|
||||||
|
|
||||||
|
; Test loop rotation with multiple exits, some of them - deoptimizing.
|
||||||
|
; We should end up with a latch which exit is non-deoptimizing, so we should rotate
|
||||||
|
; more than once.
|
||||||
|
|
||||||
|
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||||
|
|
||||||
|
define i32 @test_cond_with_one_deopt_exit(i32 * nonnull %a, i64 %x) {
|
||||||
|
; Rotation done twice.
|
||||||
|
; Latch should be at the 2nd condition (for.cond2), exiting to %return.
|
||||||
|
;
|
||||||
|
; CHECK-LABEL: @test_cond_with_one_deopt_exit(
|
||||||
|
; CHECK-NEXT: entry:
|
||||||
|
; CHECK-NEXT: [[VAL_A_IDX3:%.*]] = load i32, i32* %a, align 4
|
||||||
|
; CHECK-NEXT: [[ZERO_CHECK4:%.*]] = icmp eq i32 [[VAL_A_IDX3]], 0
|
||||||
|
; CHECK-NEXT: br i1 [[ZERO_CHECK4]], label %deopt.exit, label %for.cond2.lr.ph
|
||||||
|
; CHECK: for.cond2.lr.ph:
|
||||||
|
; CHECK-NEXT: [[FOR_CHECK8:%.*]] = icmp ult i64 0, %x
|
||||||
|
; CHECK-NEXT: br i1 [[FOR_CHECK8]], label %for.body.lr.ph, label %return
|
||||||
|
; CHECK: for.body.lr.ph:
|
||||||
|
; CHECK-NEXT: br label %for.body
|
||||||
|
; CHECK: for.cond2:
|
||||||
|
; CHECK: [[FOR_CHECK:%.*]] = icmp ult i64 {{%.*}}, %x
|
||||||
|
; CHECK-NEXT: br i1 [[FOR_CHECK]], label %for.body, label %for.cond2.return_crit_edge
|
||||||
|
; CHECK: for.body:
|
||||||
|
; CHECK: br label %for.tail
|
||||||
|
; CHECK: for.tail:
|
||||||
|
; CHECK: [[VAL_A_IDX:%.*]] = load i32, i32*
|
||||||
|
; CHECK-NEXT: [[ZERO_CHECK:%.*]] = icmp eq i32 [[VAL_A_IDX]], 0
|
||||||
|
; CHECK-NEXT: br i1 [[ZERO_CHECK]], label %for.cond1.deopt.exit_crit_edge, label %for.cond2
|
||||||
|
; CHECK: for.cond2.return_crit_edge:
|
||||||
|
; CHECK-NEXT: {{%.*}} = phi i32
|
||||||
|
; CHECK-NEXT: br label %return
|
||||||
|
; CHECK: return:
|
||||||
|
; CHECK-NEXT: [[SUM_LCSSA2:%.*]] = phi i32
|
||||||
|
; CHECK-NEXT: ret i32 [[SUM_LCSSA2]]
|
||||||
|
; CHECK: for.cond1.deopt.exit_crit_edge:
|
||||||
|
; CHECK-NEXT: {{%.*}} = phi i32
|
||||||
|
; CHECK-NEXT: br label %deopt.exit
|
||||||
|
; CHECK: deopt.exit:
|
||||||
|
; CHECK: [[DEOPT_VAL:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 {{%.*}}) ]
|
||||||
|
; CHECK-NEXT: ret i32 [[DEOPT_VAL]]
|
||||||
|
;
|
||||||
|
entry:
|
||||||
|
br label %for.cond1
|
||||||
|
|
||||||
|
for.cond1:
|
||||||
|
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||||
|
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||||
|
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||||
|
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||||
|
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||||
|
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||||
|
|
||||||
|
for.cond2:
|
||||||
|
%for.check = icmp ult i64 %idx, %x
|
||||||
|
br i1 %for.check, label %for.body, label %return
|
||||||
|
|
||||||
|
for.body:
|
||||||
|
br label %for.tail
|
||||||
|
|
||||||
|
for.tail:
|
||||||
|
%sum.next = add i32 %sum, %val.a.idx
|
||||||
|
%idx.next = add nuw nsw i64 %idx, 1
|
||||||
|
br label %for.cond1
|
||||||
|
|
||||||
|
return:
|
||||||
|
ret i32 %sum
|
||||||
|
|
||||||
|
deopt.exit:
|
||||||
|
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||||
|
ret i32 %deopt.val
|
||||||
|
}
|
||||||
|
|
||||||
|
define i32 @test_cond_with_two_deopt_exits(i32 ** nonnull %a, i64 %x) {
|
||||||
|
; Rotation done three times.
|
||||||
|
; Latch should be at the 3rd condition (for.cond3), exiting to %return.
|
||||||
|
;
|
||||||
|
; CHECK-LABEL: @test_cond_with_two_deopt_exits(
|
||||||
|
; CHECK-NEXT: entry:
|
||||||
|
; CHECK-NEXT: [[A_IDX_DEREF4:%.*]] = load i32*, i32** %a
|
||||||
|
; CHECK-NEXT: [[NULL_CHECK5:%.*]] = icmp eq i32* [[A_IDX_DEREF4]], null
|
||||||
|
; CHECK-NEXT: br i1 [[NULL_CHECK5]], label %deopt.exit1, label %for.cond2.lr.ph
|
||||||
|
; CHECK: for.cond2.lr.ph:
|
||||||
|
; CHECK-NEXT: [[VAL_A_IDX9:%.*]] = load i32, i32* [[A_IDX_DEREF4]], align 4
|
||||||
|
; CHECK-NEXT: [[ZERO_CHECK10:%.*]] = icmp eq i32 [[VAL_A_IDX9]], 0
|
||||||
|
; CHECK-NEXT: br i1 [[ZERO_CHECK10]], label %deopt.exit2, label %for.cond3.lr.ph
|
||||||
|
; CHECK: for.cond3.lr.ph:
|
||||||
|
; CHECK-NEXT: [[FOR_CHECK14:%.*]] = icmp ult i64 0, %x
|
||||||
|
; CHECK-NEXT: br i1 [[FOR_CHECK14]], label %for.body.lr.ph, label %return
|
||||||
|
; CHECK: for.body.lr.ph:
|
||||||
|
; CHECK-NEXT: br label %for.body
|
||||||
|
; CHECK: for.cond2:
|
||||||
|
; CHECK: [[VAL_A_IDX:%.*]] = load i32, i32*
|
||||||
|
; CHECK-NEXT: [[ZERO_CHECK:%.*]] = icmp eq i32 [[VAL_A_IDX]], 0
|
||||||
|
; CHECK-NEXT: br i1 [[ZERO_CHECK]], label %for.cond2.deopt.exit2_crit_edge, label %for.cond3
|
||||||
|
; CHECK: for.cond3:
|
||||||
|
; CHECK: [[FOR_CHECK:%.*]] = icmp ult i64 {{%.*}}, %x
|
||||||
|
; CHECK-NEXT: br i1 [[FOR_CHECK]], label %for.body, label %for.cond3.return_crit_edge
|
||||||
|
; CHECK: for.body:
|
||||||
|
; CHECK: br label %for.tail
|
||||||
|
; CHECK: for.tail:
|
||||||
|
; CHECK: [[IDX_NEXT:%.*]] = add nuw nsw i64 {{%.*}}, 1
|
||||||
|
; CHECK: [[NULL_CHECK:%.*]] = icmp eq i32* {{%.*}}, null
|
||||||
|
; CHECK-NEXT: br i1 [[NULL_CHECK]], label %for.cond1.deopt.exit1_crit_edge, label %for.cond2
|
||||||
|
; CHECK: for.cond3.return_crit_edge:
|
||||||
|
; CHECK-NEXT: [[SPLIT18:%.*]] = phi i32
|
||||||
|
; CHECK-NEXT: br label %return
|
||||||
|
; CHECK: return:
|
||||||
|
; CHECK-NEXT: [[SUM_LCSSA2:%.*]] = phi i32
|
||||||
|
; CHECK-NEXT: ret i32 [[SUM_LCSSA2]]
|
||||||
|
; CHECK: for.cond1.deopt.exit1_crit_edge:
|
||||||
|
; CHECK-NEXT: br label %deopt.exit1
|
||||||
|
; CHECK: deopt.exit1:
|
||||||
|
; CHECK-NEXT: [[DEOPT_VAL1:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 0) ]
|
||||||
|
; CHECK-NEXT: ret i32 [[DEOPT_VAL1]]
|
||||||
|
; CHECK: for.cond2.deopt.exit2_crit_edge:
|
||||||
|
; CHECK-NEXT: [[SPLIT:%.*]] = phi i32
|
||||||
|
; CHECK-NEXT: br label %deopt.exit2
|
||||||
|
; CHECK: deopt.exit2:
|
||||||
|
; CHECK-NEXT: [[VAL_A_IDX_LCSSA:%.*]] = phi i32
|
||||||
|
; CHECK-NEXT: [[DEOPT_VAL2:%.*]] = call i32 (...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 [[VAL_A_IDX_LCSSA]]) ]
|
||||||
|
; CHECK-NEXT: ret i32 [[DEOPT_VAL2]]
|
||||||
|
;
|
||||||
|
entry:
|
||||||
|
br label %for.cond1
|
||||||
|
|
||||||
|
for.cond1:
|
||||||
|
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||||
|
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||||
|
%a.idx = getelementptr inbounds i32*, i32 **%a, i64 %idx
|
||||||
|
%a.idx.deref = load i32*, i32** %a.idx
|
||||||
|
%null.check = icmp eq i32* %a.idx.deref, null
|
||||||
|
br i1 %null.check, label %deopt.exit1, label %for.cond2
|
||||||
|
|
||||||
|
for.cond2:
|
||||||
|
%val.a.idx = load i32, i32* %a.idx.deref, align 4
|
||||||
|
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||||
|
br i1 %zero.check, label %deopt.exit2, label %for.cond3
|
||||||
|
|
||||||
|
for.cond3:
|
||||||
|
%for.check = icmp ult i64 %idx, %x
|
||||||
|
br i1 %for.check, label %for.body, label %return
|
||||||
|
|
||||||
|
for.body:
|
||||||
|
br label %for.tail
|
||||||
|
|
||||||
|
for.tail:
|
||||||
|
%sum.next = add i32 %sum, %val.a.idx
|
||||||
|
%idx.next = add nuw nsw i64 %idx, 1
|
||||||
|
br label %for.cond1
|
||||||
|
|
||||||
|
return:
|
||||||
|
ret i32 %sum
|
||||||
|
|
||||||
|
deopt.exit1:
|
||||||
|
%deopt.val1 = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 0) ]
|
||||||
|
ret i32 %deopt.val1
|
||||||
|
deopt.exit2:
|
||||||
|
%deopt.val2 = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||||
|
ret i32 %deopt.val2
|
||||||
|
}
|
@ -15,6 +15,7 @@ add_llvm_unittest(UtilsTests
|
|||||||
FunctionComparatorTest.cpp
|
FunctionComparatorTest.cpp
|
||||||
IntegerDivisionTest.cpp
|
IntegerDivisionTest.cpp
|
||||||
LocalTest.cpp
|
LocalTest.cpp
|
||||||
|
LoopRotationUtilsTest.cpp
|
||||||
LoopUtilsTest.cpp
|
LoopUtilsTest.cpp
|
||||||
SizeOptsTest.cpp
|
SizeOptsTest.cpp
|
||||||
SSAUpdaterBulkTest.cpp
|
SSAUpdaterBulkTest.cpp
|
||||||
|
166
llvm/unittests/Transforms/Utils/LoopRotationUtilsTest.cpp
Normal file
166
llvm/unittests/Transforms/Utils/LoopRotationUtilsTest.cpp
Normal file
@ -0,0 +1,166 @@
|
|||||||
|
//===- LoopRotationUtilsTest.cpp - Unit tests for LoopRotation utility ----===//
|
||||||
|
//
|
||||||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||||||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||||
|
//
|
||||||
|
//===----------------------------------------------------------------------===//
|
||||||
|
|
||||||
|
#include "llvm/Transforms/Utils/LoopRotationUtils.h"
|
||||||
|
#include "llvm/Analysis/AssumptionCache.h"
|
||||||
|
#include "llvm/Analysis/InstructionSimplify.h"
|
||||||
|
#include "llvm/Analysis/LoopInfo.h"
|
||||||
|
#include "llvm/Analysis/ScalarEvolution.h"
|
||||||
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||||
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||||
|
#include "llvm/AsmParser/Parser.h"
|
||||||
|
#include "llvm/IR/Dominators.h"
|
||||||
|
#include "llvm/IR/LLVMContext.h"
|
||||||
|
#include "llvm/Support/SourceMgr.h"
|
||||||
|
#include "gtest/gtest.h"
|
||||||
|
|
||||||
|
using namespace llvm;
|
||||||
|
|
||||||
|
static std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
|
||||||
|
SMDiagnostic Err;
|
||||||
|
std::unique_ptr<Module> Mod = parseAssemblyString(IR, Err, C);
|
||||||
|
if (!Mod)
|
||||||
|
Err.print("LoopRotationUtilsTest", errs());
|
||||||
|
return Mod;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This test contains multi-deopt-exits pattern that might allow loop rotation
|
||||||
|
/// to trigger multiple times if multiple rotations are enabled.
|
||||||
|
/// At least one rotation should be performed, no matter what loop rotation settings are.
|
||||||
|
TEST(LoopRotate, MultiDeoptExit) {
|
||||||
|
LLVMContext C;
|
||||||
|
|
||||||
|
std::unique_ptr<Module> M = parseIR(
|
||||||
|
C,
|
||||||
|
R"(
|
||||||
|
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||||
|
|
||||||
|
define i32 @test(i32 * nonnull %a, i64 %x) {
|
||||||
|
entry:
|
||||||
|
br label %for.cond1
|
||||||
|
|
||||||
|
for.cond1:
|
||||||
|
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||||
|
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||||
|
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||||
|
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||||
|
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||||
|
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||||
|
|
||||||
|
for.cond2:
|
||||||
|
%for.check = icmp ult i64 %idx, %x
|
||||||
|
br i1 %for.check, label %for.body, label %return
|
||||||
|
|
||||||
|
for.body:
|
||||||
|
br label %for.tail
|
||||||
|
|
||||||
|
for.tail:
|
||||||
|
%sum.next = add i32 %sum, %val.a.idx
|
||||||
|
%idx.next = add nuw nsw i64 %idx, 1
|
||||||
|
br label %for.cond1
|
||||||
|
|
||||||
|
return:
|
||||||
|
ret i32 %sum
|
||||||
|
|
||||||
|
deopt.exit:
|
||||||
|
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||||
|
ret i32 %deopt.val
|
||||||
|
})"
|
||||||
|
);
|
||||||
|
|
||||||
|
auto *F = M->getFunction("test");
|
||||||
|
DominatorTree DT(*F);
|
||||||
|
LoopInfo LI(DT);
|
||||||
|
AssumptionCache AC(*F);
|
||||||
|
TargetTransformInfo TTI(M->getDataLayout());
|
||||||
|
TargetLibraryInfoImpl TLII;
|
||||||
|
TargetLibraryInfo TLI(TLII);
|
||||||
|
ScalarEvolution SE(*F, TLI, AC, DT, LI);
|
||||||
|
SimplifyQuery SQ(M->getDataLayout());
|
||||||
|
|
||||||
|
Loop *L = *LI.begin();
|
||||||
|
|
||||||
|
bool ret = LoopRotation(L, &LI, &TTI,
|
||||||
|
&AC, &DT,
|
||||||
|
&SE, nullptr,
|
||||||
|
SQ, true, -1, false);
|
||||||
|
EXPECT_TRUE(ret);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Checking a special case of multi-deopt exit loop that can not perform
|
||||||
|
/// required amount of rotations due to the desired header containing
|
||||||
|
/// non-duplicatable code.
|
||||||
|
/// Similar to MultiDeoptExit test this one should do at least one rotation and
|
||||||
|
/// pass no matter what loop rotation settings are.
|
||||||
|
TEST(LoopRotate, MultiDeoptExit_Nondup) {
|
||||||
|
LLVMContext C;
|
||||||
|
|
||||||
|
std::unique_ptr<Module> M = parseIR(
|
||||||
|
C,
|
||||||
|
R"(
|
||||||
|
; Rotation should be done once, attempted twice.
|
||||||
|
; Second time fails due to non-duplicatable header.
|
||||||
|
|
||||||
|
declare i32 @llvm.experimental.deoptimize.i32(...)
|
||||||
|
|
||||||
|
declare void @nondup()
|
||||||
|
|
||||||
|
define i32 @test_nondup(i32 * nonnull %a, i64 %x) {
|
||||||
|
entry:
|
||||||
|
br label %for.cond1
|
||||||
|
|
||||||
|
for.cond1:
|
||||||
|
%idx = phi i64 [ 0, %entry ], [ %idx.next, %for.tail ]
|
||||||
|
%sum = phi i32 [ 0, %entry ], [ %sum.next, %for.tail ]
|
||||||
|
%a.idx = getelementptr inbounds i32, i32 *%a, i64 %idx
|
||||||
|
%val.a.idx = load i32, i32* %a.idx, align 4
|
||||||
|
%zero.check = icmp eq i32 %val.a.idx, 0
|
||||||
|
br i1 %zero.check, label %deopt.exit, label %for.cond2
|
||||||
|
|
||||||
|
for.cond2:
|
||||||
|
call void @nondup() noduplicate
|
||||||
|
%for.check = icmp ult i64 %idx, %x
|
||||||
|
br i1 %for.check, label %for.body, label %return
|
||||||
|
|
||||||
|
for.body:
|
||||||
|
br label %for.tail
|
||||||
|
|
||||||
|
for.tail:
|
||||||
|
%sum.next = add i32 %sum, %val.a.idx
|
||||||
|
%idx.next = add nuw nsw i64 %idx, 1
|
||||||
|
br label %for.cond1
|
||||||
|
|
||||||
|
return:
|
||||||
|
ret i32 %sum
|
||||||
|
|
||||||
|
deopt.exit:
|
||||||
|
%deopt.val = call i32(...) @llvm.experimental.deoptimize.i32() [ "deopt"(i32 %val.a.idx) ]
|
||||||
|
ret i32 %deopt.val
|
||||||
|
})"
|
||||||
|
);
|
||||||
|
|
||||||
|
auto *F = M->getFunction("test_nondup");
|
||||||
|
DominatorTree DT(*F);
|
||||||
|
LoopInfo LI(DT);
|
||||||
|
AssumptionCache AC(*F);
|
||||||
|
TargetTransformInfo TTI(M->getDataLayout());
|
||||||
|
TargetLibraryInfoImpl TLII;
|
||||||
|
TargetLibraryInfo TLI(TLII);
|
||||||
|
ScalarEvolution SE(*F, TLI, AC, DT, LI);
|
||||||
|
SimplifyQuery SQ(M->getDataLayout());
|
||||||
|
|
||||||
|
Loop *L = *LI.begin();
|
||||||
|
|
||||||
|
bool ret = LoopRotation(L, &LI, &TTI,
|
||||||
|
&AC, &DT,
|
||||||
|
&SE, nullptr,
|
||||||
|
SQ, true, -1, false);
|
||||||
|
/// LoopRotation should properly report "true" as we still perform the first rotation
|
||||||
|
/// so we do change the IR.
|
||||||
|
EXPECT_TRUE(ret);
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user