zlib-ng/arch/x86/chunkset_avx2.c

125 lines
4.7 KiB
C

/* chunkset_avx2.c -- AVX2 inline functions to copy small data chunks.
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "zbuild.h"
#include "zmemory.h"
#ifdef X86_AVX2
#include "avx2_tables.h"
#include <immintrin.h>
#include "x86_intrins.h"
typedef __m256i chunk_t;
typedef __m128i halfchunk_t;
#define HAVE_CHUNKMEMSET_2
#define HAVE_CHUNKMEMSET_4
#define HAVE_CHUNKMEMSET_8
#define HAVE_CHUNKMEMSET_16
#define HAVE_CHUNK_MAG
#define HAVE_HALF_CHUNK
static inline void chunkmemset_2(uint8_t *from, chunk_t *chunk) {
*chunk = _mm256_set1_epi16(zng_memread_2(from));
}
static inline void chunkmemset_4(uint8_t *from, chunk_t *chunk) {
*chunk = _mm256_set1_epi32(zng_memread_4(from));
}
static inline void chunkmemset_8(uint8_t *from, chunk_t *chunk) {
*chunk = _mm256_set1_epi64x(zng_memread_8(from));
}
static inline void chunkmemset_16(uint8_t *from, chunk_t *chunk) {
*chunk = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i*)from));
}
static inline void loadchunk(uint8_t const *s, chunk_t *chunk) {
*chunk = _mm256_loadu_si256((__m256i *)s);
}
static inline void storechunk(uint8_t *out, chunk_t *chunk) {
_mm256_storeu_si256((__m256i *)out, *chunk);
}
static inline chunk_t GET_CHUNK_MAG(uint8_t *buf, uint32_t *chunk_rem, uint32_t dist) {
lut_rem_pair lut_rem = perm_idx_lut[dist - 3];
__m256i ret_vec;
/* While technically we only need to read 4 or 8 bytes into this vector register for a lot of cases, GCC is
* compiling this to a shared load for all branches, preferring the simpler code. Given that the buf value isn't in
* GPRs to begin with the 256 bit load is _probably_ just as inexpensive */
*chunk_rem = lut_rem.remval;
/* See note in chunkset_ssse3.c for why this is ok */
__msan_unpoison(buf + dist, 32 - dist);
if (dist < 16) {
/* This simpler case still requires us to shuffle in 128 bit lanes, so we must apply a static offset after
* broadcasting the first vector register to both halves. This is _marginally_ faster than doing two separate
* shuffles and combining the halves later */
const __m256i permute_xform =
_mm256_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16);
__m256i perm_vec = _mm256_load_si256((__m256i*)(permute_table+lut_rem.idx));
__m128i ret_vec0 = _mm_loadu_si128((__m128i*)buf);
perm_vec = _mm256_add_epi8(perm_vec, permute_xform);
ret_vec = _mm256_inserti128_si256(_mm256_castsi128_si256(ret_vec0), ret_vec0, 1);
ret_vec = _mm256_shuffle_epi8(ret_vec, perm_vec);
} else {
__m128i ret_vec0 = _mm_loadu_si128((__m128i*)buf);
__m128i ret_vec1 = _mm_loadu_si128((__m128i*)(buf + 16));
/* Take advantage of the fact that only the latter half of the 256 bit vector will actually differ */
__m128i perm_vec1 = _mm_load_si128((__m128i*)(permute_table + lut_rem.idx));
__m128i xlane_permutes = _mm_cmpgt_epi8(_mm_set1_epi8(16), perm_vec1);
__m128i xlane_res = _mm_shuffle_epi8(ret_vec0, perm_vec1);
/* Since we can't wrap twice, we can simply keep the later half exactly how it is instead of having to _also_
* shuffle those values */
__m128i latter_half = _mm_blendv_epi8(ret_vec1, xlane_res, xlane_permutes);
ret_vec = _mm256_inserti128_si256(_mm256_castsi128_si256(ret_vec0), latter_half, 1);
}
return ret_vec;
}
static inline void loadhalfchunk(uint8_t const *s, halfchunk_t *chunk) {
*chunk = _mm_loadu_si128((__m128i *)s);
}
static inline void storehalfchunk(uint8_t *out, halfchunk_t *chunk) {
_mm_storeu_si128((__m128i *)out, *chunk);
}
static inline chunk_t halfchunk2whole(halfchunk_t *chunk) {
/* We zero extend mostly to appease some memory sanitizers. These bytes are ultimately
* unlikely to be actually written or read from */
return _mm256_zextsi128_si256(*chunk);
}
static inline halfchunk_t GET_HALFCHUNK_MAG(uint8_t *buf, uint32_t *chunk_rem, uint32_t dist) {
lut_rem_pair lut_rem = perm_idx_lut[dist - 3];
__m128i perm_vec, ret_vec;
__msan_unpoison(buf + dist, 16 - dist);
ret_vec = _mm_loadu_si128((__m128i*)buf);
*chunk_rem = half_rem_vals[dist - 3];
perm_vec = _mm_load_si128((__m128i*)(permute_table + lut_rem.idx));
ret_vec = _mm_shuffle_epi8(ret_vec, perm_vec);
return ret_vec;
}
#define CHUNKSIZE chunksize_avx2
#define CHUNKCOPY chunkcopy_avx2
#define CHUNKUNROLL chunkunroll_avx2
#define CHUNKMEMSET chunkmemset_avx2
#define CHUNKMEMSET_SAFE chunkmemset_safe_avx2
#include "chunkset_tpl.h"
#define INFLATE_FAST inflate_fast_avx2
#include "inffast_tpl.h"
#endif