mirror of
https://github.com/GerbilSoft/zlib-ng.git
synced 2025-06-18 11:35:35 -04:00
101 lines
3.1 KiB
C++
101 lines
3.1 KiB
C++
/* benchmark_adler32.cc -- benchmark adler32 variants
|
|
* Copyright (C) 2022 Nathan Moinvaziri, Adam Stylinski
|
|
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
|
|
#include <benchmark/benchmark.h>
|
|
|
|
extern "C" {
|
|
# include "zbuild.h"
|
|
# include "zutil_p.h"
|
|
# include "arch_functions.h"
|
|
# include "../test_cpu_features.h"
|
|
}
|
|
|
|
#define MAX_RANDOM_INTS (1024 * 1024)
|
|
#define MAX_RANDOM_INTS_SIZE (MAX_RANDOM_INTS * sizeof(uint32_t))
|
|
|
|
class adler32: public benchmark::Fixture {
|
|
private:
|
|
uint32_t *random_ints;
|
|
|
|
public:
|
|
void SetUp(const ::benchmark::State& state) {
|
|
/* Control the alignment so that we have the best case scenario for loads. With
|
|
* AVX512, unaligned loads can mean we're crossing a cacheline boundary at every load.
|
|
* And while this is a realistic scenario, it makes it difficult to compare benchmark
|
|
* to benchmark because one allocation could have been aligned perfectly for the loads
|
|
* while the subsequent one happened to not be. This is not to be advantageous to AVX512
|
|
* (indeed, all lesser SIMD implementations benefit from this aligned allocation), but to
|
|
* control the _consistency_ of the results */
|
|
random_ints = (uint32_t *)zng_alloc(MAX_RANDOM_INTS_SIZE);
|
|
assert(random_ints != NULL);
|
|
|
|
for (int32_t i = 0; i < MAX_RANDOM_INTS; i++) {
|
|
random_ints[i] = rand();
|
|
}
|
|
}
|
|
|
|
void Bench(benchmark::State& state, adler32_func adler32) {
|
|
uint32_t hash = 0;
|
|
|
|
for (auto _ : state) {
|
|
hash = adler32(hash, (const unsigned char *)random_ints, (size_t)state.range(0));
|
|
}
|
|
|
|
benchmark::DoNotOptimize(hash);
|
|
}
|
|
|
|
void TearDown(const ::benchmark::State& state) {
|
|
zng_free(random_ints);
|
|
}
|
|
};
|
|
|
|
#define BENCHMARK_ADLER32(name, fptr, support_flag) \
|
|
BENCHMARK_DEFINE_F(adler32, name)(benchmark::State& state) { \
|
|
if (!support_flag) { \
|
|
state.SkipWithError("CPU does not support " #name); \
|
|
} \
|
|
Bench(state, fptr); \
|
|
} \
|
|
BENCHMARK_REGISTER_F(adler32, name)->Arg(1)->Arg(8)->Arg(12)->Arg(16)->Arg(32)->Arg(64)->Arg(512)->Arg(4<<10)->Arg(32<<10)->Arg(256<<10)->Arg(4096<<10)
|
|
|
|
BENCHMARK_ADLER32(c, adler32_c, 1);
|
|
|
|
#ifdef DISABLE_RUNTIME_CPU_DETECTION
|
|
BENCHMARK_ADLER32(native, native_adler32, 1);
|
|
#else
|
|
|
|
#ifdef ARM_NEON
|
|
BENCHMARK_ADLER32(neon, adler32_neon, test_cpu_features.arm.has_neon);
|
|
#endif
|
|
|
|
#ifdef PPC_VMX
|
|
BENCHMARK_ADLER32(vmx, adler32_vmx, test_cpu_features.power.has_altivec);
|
|
#endif
|
|
#ifdef POWER8_VSX
|
|
BENCHMARK_ADLER32(power8, adler32_power8, test_cpu_features.power.has_arch_2_07);
|
|
#endif
|
|
|
|
#ifdef RISCV_RVV
|
|
BENCHMARK_ADLER32(rvv, adler32_rvv, test_cpu_features.riscv.has_rvv);
|
|
#endif
|
|
|
|
#ifdef X86_SSSE3
|
|
BENCHMARK_ADLER32(ssse3, adler32_ssse3, test_cpu_features.x86.has_ssse3);
|
|
#endif
|
|
#ifdef X86_AVX2
|
|
BENCHMARK_ADLER32(avx2, adler32_avx2, test_cpu_features.x86.has_avx2);
|
|
#endif
|
|
#ifdef X86_AVX512
|
|
BENCHMARK_ADLER32(avx512, adler32_avx512, test_cpu_features.x86.has_avx512);
|
|
#endif
|
|
#ifdef X86_AVX512VNNI
|
|
BENCHMARK_ADLER32(avx512_vnni, adler32_avx512_vnni, test_cpu_features.x86.has_avx512vnni);
|
|
#endif
|
|
|
|
#endif
|