mirror of
https://github.com/GerbilSoft/zlib-ng.git
synced 2025-06-18 11:35:35 -04:00

The test simulates what one of the QEMU live migration tests is doing: increments each buffer byte by 1 while deflate()ing it. The test tries to produce a race condition and therefore is probabilistic. The longer it runs, the better are the chances to catch an issue. The scenario in question is known to be broken on IBM Z with DFLTCC, and there it is caught in 100ms most of the time. The run time is therefore set to 1 second in order to balance usability and reliability.
171 lines
5.3 KiB
C++
171 lines
5.3 KiB
C++
/* Test deflate() on concurrently modified next_in.
|
|
*
|
|
* Plain zlib does not document that this is supported, but in practice it tolerates this, and QEMU live migration is
|
|
* known to rely on this. Make sure zlib-ng tolerates this as well.
|
|
*/
|
|
|
|
#include "zbuild.h"
|
|
#ifdef ZLIB_COMPAT
|
|
#include "zlib.h"
|
|
#else
|
|
#include "zlib-ng.h"
|
|
#endif
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <cstring>
|
|
#include <thread>
|
|
|
|
static uint8_t buf[8 * 1024];
|
|
static uint8_t zbuf[4 * 1024];
|
|
static uint8_t tmp[8 * 1024];
|
|
|
|
/* Thread that increments all bytes in buf by 1. */
|
|
class Mutator {
|
|
enum class State {
|
|
PAUSED,
|
|
RUNNING,
|
|
STOPPED,
|
|
};
|
|
|
|
public:
|
|
Mutator()
|
|
: m_state(State::PAUSED), m_target_state(State::PAUSED),
|
|
m_thread(&Mutator::run, this) {}
|
|
~Mutator() {
|
|
transition(State::STOPPED);
|
|
m_thread.join();
|
|
}
|
|
|
|
void pause() {
|
|
transition(State::PAUSED);
|
|
}
|
|
|
|
void resume() {
|
|
transition(State::RUNNING);
|
|
}
|
|
|
|
private:
|
|
void run() {
|
|
while (true) {
|
|
m_state.store(m_target_state);
|
|
if (m_state == State::PAUSED)
|
|
continue;
|
|
if (m_state == State::STOPPED)
|
|
break;
|
|
for (uint8_t & i: buf)
|
|
i++;
|
|
}
|
|
}
|
|
|
|
void transition(State target_state) {
|
|
m_target_state = target_state;
|
|
while (m_state != target_state) {
|
|
}
|
|
}
|
|
|
|
std::atomic<State> m_state, m_target_state;
|
|
std::thread m_thread;
|
|
};
|
|
|
|
TEST(deflate, concurrency) {
|
|
#ifdef S390_DFLTCC_DEFLATE
|
|
GTEST_SKIP() << "Known to be broken with S390_DFLTCC_DEFLATE";
|
|
#endif
|
|
|
|
/* Create reusable mutator and streams. */
|
|
Mutator mutator;
|
|
|
|
PREFIX3(stream) dstrm;
|
|
memset(&dstrm, 0, sizeof(dstrm));
|
|
int err = PREFIX(deflateInit2)(&dstrm, Z_BEST_SPEED, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
|
|
ASSERT_EQ(Z_OK, err) << dstrm.msg;
|
|
|
|
PREFIX3(stream) istrm;
|
|
memset(&istrm, 0, sizeof(istrm));
|
|
err = PREFIX(inflateInit2)(&istrm, -15);
|
|
ASSERT_EQ(Z_OK, err) << istrm.msg;
|
|
|
|
/* Iterate for a certain amount of time. */
|
|
auto deadline = std::chrono::steady_clock::now() + std::chrono::seconds(1);
|
|
while (std::chrono::steady_clock::now() < deadline) {
|
|
/* Start each iteration with a fresh stream state. */
|
|
err = PREFIX(deflateReset)(&dstrm);
|
|
ASSERT_EQ(Z_OK, err) << dstrm.msg;
|
|
|
|
err = PREFIX(inflateReset)(&istrm);
|
|
ASSERT_EQ(Z_OK, err) << istrm.msg;
|
|
|
|
/* Mutate and compress the first half of buf concurrently.
|
|
* Decompress and throw away the results, which are unpredictable.
|
|
*/
|
|
mutator.resume();
|
|
dstrm.next_in = buf;
|
|
dstrm.avail_in = sizeof(buf) / 2;
|
|
while (dstrm.avail_in > 0) {
|
|
dstrm.next_out = zbuf;
|
|
dstrm.avail_out = sizeof(zbuf);
|
|
err = PREFIX(deflate)(&dstrm, Z_NO_FLUSH);
|
|
ASSERT_EQ(Z_OK, err) << dstrm.msg;
|
|
istrm.next_in = zbuf;
|
|
istrm.avail_in = sizeof(zbuf) - dstrm.avail_out;
|
|
while (istrm.avail_in > 0) {
|
|
istrm.next_out = tmp;
|
|
istrm.avail_out = sizeof(tmp);
|
|
err = PREFIX(inflate)(&istrm, Z_NO_FLUSH);
|
|
ASSERT_EQ(Z_OK, err) << istrm.msg;
|
|
}
|
|
}
|
|
|
|
/* Stop mutation and compress the second half of buf.
|
|
* Decompress and check that the result matches.
|
|
*/
|
|
mutator.pause();
|
|
dstrm.next_in = buf + sizeof(buf) / 2;
|
|
dstrm.avail_in = sizeof(buf) - sizeof(buf) / 2;
|
|
while (dstrm.avail_in > 0) {
|
|
dstrm.next_out = zbuf;
|
|
dstrm.avail_out = sizeof(zbuf);
|
|
err = PREFIX(deflate)(&dstrm, Z_FINISH);
|
|
if (err == Z_STREAM_END)
|
|
ASSERT_EQ(0u, dstrm.avail_in);
|
|
else
|
|
ASSERT_EQ(Z_OK, err) << dstrm.msg;
|
|
istrm.next_in = zbuf;
|
|
istrm.avail_in = sizeof(zbuf) - dstrm.avail_out;
|
|
while (istrm.avail_in > 0) {
|
|
size_t orig_total_out = istrm.total_out;
|
|
istrm.next_out = tmp;
|
|
istrm.avail_out = sizeof(tmp);
|
|
err = PREFIX(inflate)(&istrm, Z_NO_FLUSH);
|
|
if (err == Z_STREAM_END)
|
|
ASSERT_EQ(0u, istrm.avail_in);
|
|
else
|
|
ASSERT_EQ(Z_OK, err) << istrm.msg;
|
|
size_t concurrent_size = sizeof(buf) - sizeof(buf) / 2;
|
|
if (istrm.total_out > concurrent_size) {
|
|
size_t tmp_offset, buf_offset, size;
|
|
if (orig_total_out >= concurrent_size) {
|
|
tmp_offset = 0;
|
|
buf_offset = orig_total_out - concurrent_size;
|
|
size = istrm.total_out - orig_total_out;
|
|
} else {
|
|
tmp_offset = concurrent_size - orig_total_out;
|
|
buf_offset = 0;
|
|
size = istrm.total_out - concurrent_size;
|
|
}
|
|
ASSERT_EQ(0, memcmp(tmp + tmp_offset, buf + sizeof(buf) / 2 + buf_offset, size));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
err = PREFIX(inflateEnd)(&istrm);
|
|
ASSERT_EQ(Z_OK, err) << istrm.msg;
|
|
|
|
err = PREFIX(deflateEnd)(&dstrm);
|
|
ASSERT_EQ(Z_OK, err) << istrm.msg;
|
|
}
|