Fold a copy into the adler32 function for UPDATEWINDOW for neon

So a lot of alterations had to be done to make this not worse and
so far, it's not really better, either. I had to force inlining for
the adler routine, I had to remove the x4 load instruction otherwise
pipelining stalled, and I had to use restrict pointers with a copy
idiom for GCC to inline a copy routine for the tail.

Still, we see a small benefit in benchmarks, particularly when done
with size of our window or larger. There's also an added benefit that
this will fix #1824.
This commit is contained in:
Adam Stylinski 2024-11-30 12:01:28 -05:00 committed by Hans Kristian Rosbach
parent 356a7976db
commit 50e9ca06e2
6 changed files with 213 additions and 25 deletions

View File

@ -10,17 +10,141 @@
#include "zbuild.h"
#include "adler32_p.h"
static void NEON_accum32(uint32_t *s, const uint8_t *buf, size_t len) {
static const uint16_t ALIGNED_(16) taps[64] = {
64, 63, 62, 61, 60, 59, 58, 57,
56, 55, 54, 53, 52, 51, 50, 49,
48, 47, 46, 45, 44, 43, 42, 41,
40, 39, 38, 37, 36, 35, 34, 33,
32, 31, 30, 29, 28, 27, 26, 25,
24, 23, 22, 21, 20, 19, 18, 17,
16, 15, 14, 13, 12, 11, 10, 9,
8, 7, 6, 5, 4, 3, 2, 1 };
static const uint16_t ALIGNED_(64) taps[64] = {
64, 63, 62, 61, 60, 59, 58, 57,
56, 55, 54, 53, 52, 51, 50, 49,
48, 47, 46, 45, 44, 43, 42, 41,
40, 39, 38, 37, 36, 35, 34, 33,
32, 31, 30, 29, 28, 27, 26, 25,
24, 23, 22, 21, 20, 19, 18, 17,
16, 15, 14, 13, 12, 11, 10, 9,
8, 7, 6, 5, 4, 3, 2, 1 };
static Z_FORCEINLINE void NEON_accum32_copy(uint32_t *s, uint8_t *dst, const uint8_t *buf, size_t len) {
uint32x4_t adacc = vdupq_n_u32(0);
uint32x4_t s2acc = vdupq_n_u32(0);
uint32x4_t s2acc_0 = vdupq_n_u32(0);
uint32x4_t s2acc_1 = vdupq_n_u32(0);
uint32x4_t s2acc_2 = vdupq_n_u32(0);
adacc = vsetq_lane_u32(s[0], adacc, 0);
s2acc = vsetq_lane_u32(s[1], s2acc, 0);
uint32x4_t s3acc = vdupq_n_u32(0);
uint32x4_t adacc_prev = adacc;
uint16x8_t s2_0, s2_1, s2_2, s2_3;
s2_0 = s2_1 = s2_2 = s2_3 = vdupq_n_u16(0);
uint16x8_t s2_4, s2_5, s2_6, s2_7;
s2_4 = s2_5 = s2_6 = s2_7 = vdupq_n_u16(0);
size_t num_iter = len >> 2;
int rem = len & 3;
for (size_t i = 0; i < num_iter; ++i) {
uint8x16_t d0 = vld1q_u8(buf);
uint8x16_t d1 = vld1q_u8(buf + 16);
uint8x16_t d2 = vld1q_u8(buf + 32);
uint8x16_t d3 = vld1q_u8(buf + 48);
vst1q_u8(dst, d0);
vst1q_u8(dst + 16, d1);
vst1q_u8(dst + 32, d2);
vst1q_u8(dst + 48, d3);
dst += 64;
/* Unfortunately it doesn't look like there's a direct sum 8 bit to 32
* bit instruction, we'll have to make due summing to 16 bits first */
uint16x8x2_t hsum, hsum_fold;
hsum.val[0] = vpaddlq_u8(d0);
hsum.val[1] = vpaddlq_u8(d1);
hsum_fold.val[0] = vpadalq_u8(hsum.val[0], d2);
hsum_fold.val[1] = vpadalq_u8(hsum.val[1], d3);
adacc = vpadalq_u16(adacc, hsum_fold.val[0]);
s3acc = vaddq_u32(s3acc, adacc_prev);
adacc = vpadalq_u16(adacc, hsum_fold.val[1]);
/* If we do straight widening additions to the 16 bit values, we don't incur
* the usual penalties of a pairwise add. We can defer the multiplications
* until the very end. These will not overflow because we are incurring at
* most 408 loop iterations (NMAX / 64), and a given lane is only going to be
* summed into once. This means for the maximum input size, the largest value
* we will see is 255 * 102 = 26010, safely under uint16 max */
s2_0 = vaddw_u8(s2_0, vget_low_u8(d0));
s2_1 = vaddw_high_u8(s2_1, d0);
s2_2 = vaddw_u8(s2_2, vget_low_u8(d1));
s2_3 = vaddw_high_u8(s2_3, d1);
s2_4 = vaddw_u8(s2_4, vget_low_u8(d2));
s2_5 = vaddw_high_u8(s2_5, d2);
s2_6 = vaddw_u8(s2_6, vget_low_u8(d3));
s2_7 = vaddw_high_u8(s2_7, d3);
adacc_prev = adacc;
buf += 64;
}
s3acc = vshlq_n_u32(s3acc, 6);
if (rem) {
uint32x4_t s3acc_0 = vdupq_n_u32(0);
while (rem--) {
uint8x16_t d0 = vld1q_u8(buf);
vst1q_u8(dst, d0);
dst += 16;
uint16x8_t adler;
adler = vpaddlq_u8(d0);
s2_6 = vaddw_u8(s2_6, vget_low_u8(d0));
s2_7 = vaddw_high_u8(s2_7, d0);
adacc = vpadalq_u16(adacc, adler);
s3acc_0 = vaddq_u32(s3acc_0, adacc_prev);
adacc_prev = adacc;
buf += 16;
}
s3acc_0 = vshlq_n_u32(s3acc_0, 4);
s3acc = vaddq_u32(s3acc_0, s3acc);
}
uint16x8x4_t t0_t3 = vld1q_u16_x4(taps);
uint16x8x4_t t4_t7 = vld1q_u16_x4(taps + 32);
s2acc = vmlal_high_u16(s2acc, t0_t3.val[0], s2_0);
s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[0]), vget_low_u16(s2_0));
s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[1], s2_1);
s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[1]), vget_low_u16(s2_1));
s2acc = vmlal_high_u16(s2acc, t0_t3.val[2], s2_2);
s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[2]), vget_low_u16(s2_2));
s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[3], s2_3);
s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[3]), vget_low_u16(s2_3));
s2acc = vmlal_high_u16(s2acc, t4_t7.val[0], s2_4);
s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[0]), vget_low_u16(s2_4));
s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[1], s2_5);
s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[1]), vget_low_u16(s2_5));
s2acc = vmlal_high_u16(s2acc, t4_t7.val[2], s2_6);
s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[2]), vget_low_u16(s2_6));
s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[3], s2_7);
s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[3]), vget_low_u16(s2_7));
s2acc = vaddq_u32(s2acc_0, s2acc);
s2acc_2 = vaddq_u32(s2acc_1, s2acc_2);
s2acc = vaddq_u32(s2acc, s2acc_2);
uint32x2_t adacc2, s2acc2, as;
s2acc = vaddq_u32(s2acc, s3acc);
adacc2 = vpadd_u32(vget_low_u32(adacc), vget_high_u32(adacc));
s2acc2 = vpadd_u32(vget_low_u32(s2acc), vget_high_u32(s2acc));
as = vpadd_u32(adacc2, s2acc2);
s[0] = vget_lane_u32(as, 0);
s[1] = vget_lane_u32(as, 1);
}
static Z_FORCEINLINE void NEON_accum32(uint32_t *s, const uint8_t *buf, size_t len) {
uint32x4_t adacc = vdupq_n_u32(0);
uint32x4_t s2acc = vdupq_n_u32(0);
uint32x4_t s2acc_0 = vdupq_n_u32(0);
@ -141,22 +265,29 @@ static void NEON_handle_tail(uint32_t *pair, const uint8_t *buf, size_t len) {
}
}
Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len) {
static Z_FORCEINLINE uint32_t adler32_fold_copy_impl(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len, const int COPY) {
/* split Adler-32 into component sums */
uint32_t sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
/* in case user likes doing a byte at a time, keep it fast */
if (len == 1)
return adler32_len_1(adler, buf, sum2);
if (len == 1) {
if (COPY)
*dst = *src;
return adler32_len_1(adler, src, sum2);
}
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (buf == NULL)
if (src == NULL)
return 1L;
/* in case short lengths are provided, keep it somewhat fast */
if (len < 16)
return adler32_len_16(adler, buf, len, sum2);
if (len < 16) {
if (COPY)
return adler32_copy_len_16(adler, src, dst, len, sum2);
else
return adler32_len_16(adler, src, len, sum2);
}
uint32_t pair[2];
int n = NMAX;
@ -171,12 +302,33 @@ Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len)
/* If memory is not SIMD aligned, do scalar sums to an aligned
* offset, provided that doing so doesn't completely eliminate
* SIMD operation. Aligned loads are still faster on ARM, even
* though there's no explicit aligned load instruction */
unsigned int align_offset = ((uintptr_t)buf & 15);
unsigned int align_adj = (align_offset) ? 16 - align_offset : 0;
* though there's no explicit aligned load instruction. Note:
* on Android and iOS, their ABIs specify stricter alignment
* requirements for the 2,3,4x register ld1 variants. Clang for
* these platforms emits an alignment hint in the instruction for exactly
* 256 bits. Several ARM SIPs have small penalties for cacheline
* crossing loads as well (so really 512 bits is the optimal alignment
* of the buffer). 32 bytes should strike a balance, though. Clang and
* GCC on Linux will not emit this hint in the encoded instruction and
* it's unclear how many SIPs will benefit from it. For Android/iOS, we
* fallback to 4x loads and 4x stores, instead. In the copying variant we
* do this anyway, as ld1x4 seems to block ILP when stores are in the mix */
unsigned int align_offset = ((uintptr_t)src & 31);
unsigned int align_adj = (align_offset) ? 32 - align_offset : 0;
if (align_offset && len >= (16 + align_adj)) {
NEON_handle_tail(pair, buf, align_adj);
NEON_handle_tail(pair, src, align_adj);
if (COPY) {
const uint8_t* __restrict src_noalias = src;
uint8_t* __restrict dst_noalias = dst;
unsigned cpy_len = align_adj;
while (cpy_len--) {
*dst_noalias++ = *src_noalias++;
}
}
n -= align_adj;
done += align_adj;
@ -193,7 +345,11 @@ Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len)
if (n < 16)
break;
NEON_accum32(pair, buf + done, n >> 4);
if (COPY)
NEON_accum32_copy(pair, dst + done, src + done, n >> 4);
else
NEON_accum32(pair, src + done, n >> 4);
pair[0] %= BASE;
pair[1] %= BASE;
@ -203,7 +359,14 @@ Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len)
/* Handle the tail elements. */
if (done < len) {
NEON_handle_tail(pair, (buf + done), len - done);
NEON_handle_tail(pair, (src + done), len - done);
if (COPY) {
const uint8_t* __restrict src_noalias = src + done;
uint8_t* __restrict dst_noalias = dst + done;
while (done++ != len) {
*dst_noalias++ = *src_noalias++;
}
}
pair[0] %= BASE;
pair[1] %= BASE;
}
@ -212,4 +375,12 @@ Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len)
return (pair[1] << 16) | pair[0];
}
Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *src, size_t len) {
return adler32_fold_copy_impl(adler, NULL, src, len, 0);
}
Z_INTERNAL uint32_t adler32_fold_copy_neon(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len) {
return adler32_fold_copy_impl(adler, dst, src, len, dst != NULL);
}
#endif

View File

@ -7,6 +7,7 @@
#ifdef ARM_NEON
uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len);
uint32_t adler32_fold_copy_neon(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len);
uint32_t chunksize_neon(void);
uint8_t* chunkmemset_safe_neon(uint8_t *out, uint8_t *from, unsigned len, unsigned left);
@ -38,6 +39,7 @@ void slide_hash_armv6(deflate_state *s);
# if (defined(ARM_NEON) && (defined(__ARM_NEON__) || defined(__ARM_NEON))) || ARM_NOCHECK_NEON
# undef native_adler32
# define native_adler32 adler32_neon
# define native_adler32_fold_copy adler32_fold_copy_neon
# undef native_chunkmemset_safe
# define native_chunkmemset_safe chunkmemset_safe_neon
# undef native_chunksize

View File

@ -25,8 +25,12 @@
out.val[3] = vqsubq_u16(a.val[3], b); \
} while (0)
# if defined(__clang__) && defined(__arm__) && defined(__ANDROID__)
/* Clang for 32-bit Android has too strict alignment requirement (:256) for x4 NEON intrinsics */
#if defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE == 1
# define IS_IOS
#endif
# if defined(__arm__) && (defined(__ANDROID__) || defined(IS_IOS))
/* Android & iOS have too strict alignment requirement (:256) for x4 NEON intrinsics */
# undef ARM_NEON_HASLD4
# undef vld1q_u16_x4
# undef vld1q_u8_x4

View File

@ -172,6 +172,7 @@ static void init_functable(void) {
# endif
{
ft.adler32 = &adler32_neon;
ft.adler32_fold_copy = &adler32_fold_copy_neon;
ft.chunkmemset_safe = &chunkmemset_safe_neon;
ft.chunksize = &chunksize_neon;
ft.inflate_fast = &inflate_fast_neon;

View File

@ -92,7 +92,7 @@ BENCHMARK_ADLER32_BASELINE_COPY(native, native_adler32, 1);
#ifdef ARM_NEON
/* If we inline this copy for neon, the function would go here */
//BENCHMARK_ADLER32_COPY(neon, adler32_neon, test_cpu_features.arm.has_neon);
BENCHMARK_ADLER32_COPY(neon, adler32_fold_copy_neon, test_cpu_features.arm.has_neon);
BENCHMARK_ADLER32_BASELINE_COPY(neon_copy_baseline, adler32_neon, test_cpu_features.arm.has_neon);
#endif

View File

@ -70,6 +70,16 @@
# endif
#endif
/* A forced inline decorator */
#if defined(_MSC_VER)
# define Z_FORCEINLINE __forceinline
#elif defined(__GNUC__)
# define Z_FORCEINLINE inline __attribute__((always_inline))
#else
/* It won't actually force inlining but it will suggest it */
# define Z_FORCEINLINE inline
#endif
/* MS Visual Studio does not allow inline in C, only C++.
But it provides __inline instead, so use that. */
#if defined(_MSC_VER) && !defined(inline) && !defined(__cplusplus)