[librptexture] Use the PowerVR Native SDK (well, a subset) to decode PVRTC.

It seems that the R and B channels are backwards, so we'll need to fix
that next. Other than that, both 2bpp and 4bpp decoding seems to work.
(A lot better than my terrible attempt, at least.)

[cmake] options.cmake: Added an option for PVRTC. The code is licensed
under the MIT license, but we might as well provide an option for it
because it's third-party code instead of my own code.

TODO:
- Fix R/B channel ordering.
- PVRTC-II decoding?
- Add PVRTC decoding to KTX and DDS.
This commit is contained in:
David Korth 2019-12-10 21:35:45 -05:00
parent 451a8440a6
commit e51803a4fe
14 changed files with 958 additions and 402 deletions

View File

@ -80,6 +80,9 @@ OPTION(ENABLE_UNICE68 "Enable UnICE68 for Atari ST SNDH files. (GPLv3)" ON)
# Enable libmspack-xenia for Xbox 360 executables.
OPTION(ENABLE_LIBMSPACK "Enable libmspack-xenia for Xbox 360 executables." ON)
# Enable the PowerVR Native SDK subset for PVRTC decompression.
OPTION(ENABLE_PVRTC "Enable the PowerVR Native SDK subset for PVRTC decompression." ON)
# Link-time optimization.
# FIXME: Not working in clang builds and Ubuntu's gcc...
IF(MSVC)

27
debian/copyright vendored
View File

@ -120,6 +120,11 @@ Files:
Copyright: 2013 Ben Vanik. All rights reserved.
License: BSD-3-clause
Files:
extlib/PowerVR/*
Copyright: (c) Imagination Technologies Ltd.
License: MIT
License: BSD-3-clause
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
@ -471,3 +476,25 @@ License: BSD-BY-LC-NE
POSSIBILITY OF SUCH DAMAGE.
.
The complete text can be found in README-turbo.txt, supplied with the source.
License: MIT
The MIT License (MIT)
Copyright (c) <YEAR> <COPYRIGHT HOLDER>
.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
.
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

1
debian/rules vendored
View File

@ -19,6 +19,7 @@ CMAKE_OPTIONS := \
-DBUILD_GNOME=ON \
-DBUILD_MATE=OFF \
-DBUILD_CLI=ON \
-DENABLE_PVRTC=ON \
-DENABLE_LTO=ON
ifeq (,$(filter nocheck,$(DEB_BUILD_OPTIONS)))
CMAKE_OPTIONS += -DBUILD_TESTING=ON

View File

@ -182,6 +182,14 @@ IF(ENABLE_LIBMSPACK)
SET_EXTLIB_PROPERTIES(libmspack)
ENDIF(ENABLE_LIBMSPACK)
# PowerVR texture decompression.
IF(ENABLE_PVRTC)
SET(BUILD_STATIC_LIBS ON)
SET(BUILD_SHARED_LIBS OFF)
ADD_SUBDIRECTORY(PowerVR)
SET_EXTLIB_PROPERTIES(pvrtc)
ENDIF(ENABLE_PVRTC)
# Google Test
IF(BUILD_TESTING)
# Reference: http://stackoverflow.com/questions/12540970/how-to-make-gtest-build-mdd-instead-of-mtd-by-default-using-cmake

28
extlib/PowerVR/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,28 @@
PROJECT(PowerVR CXX)
# PowerVR Texture Compression decompressor from the PowerVR Native SDK.
# Copyright (c) Imagination Technologies Ltd.
# Licensed under the MIT License.
# References:
# - PowerVR commit: c1605c99281797e5cd4c8439e1bc679706bbb311
# - https://github.com/powervr-graphics/Native_SDK
# Sources.
SET(libpvrtc_SRCS PVRTDecompress.cpp)
# Headers.
SET(libpvrtc_H PVRTDecompress.h)
######################
# Build the library. #
######################
ADD_LIBRARY(pvrtc STATIC ${libpvrtc_SRCS} ${libpvrtc_H})
TARGET_INCLUDE_DIRECTORIES(pvrtc
INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}
)
# Unix: Add -fpic/-fPIC in order to use this static library in plugins.
IF(UNIX AND NOT APPLE)
SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -fpic -fPIC")
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fpic -fPIC")
ENDIF(UNIX AND NOT APPLE)

22
extlib/PowerVR/LICENSE.md vendored Normal file
View File

@ -0,0 +1,22 @@
The MIT License (MIT)
Copyright (c) Imagination Technologies Ltd.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

757
extlib/PowerVR/PVRTDecompress.cpp vendored Normal file
View File

@ -0,0 +1,757 @@
/*!
\brief Implementation of the Texture Decompression functions.
\file PVRCore/texture/PVRTDecompress.cpp
\author PowerVR by Imagination, Developer Technology Team
\copyright Copyright (c) Imagination Technologies Limited.
*/
//!\cond NO_DOXYGEN
#include <cstdlib>
#include <cstdio>
#include <climits>
#include <cmath>
#include <algorithm>
#include <cstring>
#include "PVRTDecompress.h"
#include <cassert>
#include <vector>
namespace pvr {
enum
{
ETC_MIN_TEXWIDTH = 4,
ETC_MIN_TEXHEIGHT = 4,
DXT_MIN_TEXWIDTH = 4,
DXT_MIN_TEXHEIGHT = 4,
};
struct Pixel32
{
uint8_t red, green, blue, alpha;
};
struct Pixel128S
{
int32_t red, green, blue, alpha;
};
struct PVRTCWord
{
uint32_t modulationData;
uint32_t colorData;
};
struct PVRTCWordIndices
{
int P[2], Q[2], R[2], S[2];
};
static Pixel32 getColorA(uint32_t colorData)
{
Pixel32 color;
// Opaque Color Mode - RGB 554
if ((colorData & 0x8000) != 0)
{
color.red = static_cast<uint8_t>((colorData & 0x7c00) >> 10); // 5->5 bits
color.green = static_cast<uint8_t>((colorData & 0x3e0) >> 5); // 5->5 bits
color.blue = static_cast<uint8_t>(colorData & 0x1e) | ((colorData & 0x1e) >> 4); // 4->5 bits
color.alpha = static_cast<uint8_t>(0xf); // 0->4 bits
}
// Transparent Color Mode - ARGB 3443
else
{
color.red = static_cast<uint8_t>((colorData & 0xf00) >> 7) | ((colorData & 0xf00) >> 11); // 4->5 bits
color.green = static_cast<uint8_t>((colorData & 0xf0) >> 3) | ((colorData & 0xf0) >> 7); // 4->5 bits
color.blue = static_cast<uint8_t>((colorData & 0xe) << 1) | ((colorData & 0xe) >> 2); // 3->5 bits
color.alpha = static_cast<uint8_t>((colorData & 0x7000) >> 11); // 3->4 bits - note 0 at right
}
return color;
}
static Pixel32 getColorB(uint32_t colorData)
{
Pixel32 color;
// Opaque Color Mode - RGB 555
if (colorData & 0x80000000)
{
color.red = static_cast<uint8_t>((colorData & 0x7c000000) >> 26); // 5->5 bits
color.green = static_cast<uint8_t>((colorData & 0x3e00000) >> 21); // 5->5 bits
color.blue = static_cast<uint8_t>((colorData & 0x1f0000) >> 16); // 5->5 bits
color.alpha = static_cast<uint8_t>(0xf); // 0 bits
}
// Transparent Color Mode - ARGB 3444
else
{
color.red = static_cast<uint8_t>(((colorData & 0xf000000) >> 23) | ((colorData & 0xf000000) >> 27)); // 4->5 bits
color.green = static_cast<uint8_t>(((colorData & 0xf00000) >> 19) | ((colorData & 0xf00000) >> 23)); // 4->5 bits
color.blue = static_cast<uint8_t>(((colorData & 0xf0000) >> 15) | ((colorData & 0xf0000) >> 19)); // 4->5 bits
color.alpha = static_cast<uint8_t>((colorData & 0x70000000) >> 27); // 3->4 bits - note 0 at right
}
return color;
}
static void interpolateColors(Pixel32 P, Pixel32 Q, Pixel32 R, Pixel32 S, Pixel128S* pPixel, uint8_t bpp)
{
uint32_t wordWidth = 4;
uint32_t wordHeight = 4;
if (bpp == 2) { wordWidth = 8; }
// Convert to int 32.
Pixel128S hP = { static_cast<int32_t>(P.red), static_cast<int32_t>(P.green), static_cast<int32_t>(P.blue), static_cast<int32_t>(P.alpha) };
Pixel128S hQ = { static_cast<int32_t>(Q.red), static_cast<int32_t>(Q.green), static_cast<int32_t>(Q.blue), static_cast<int32_t>(Q.alpha) };
Pixel128S hR = { static_cast<int32_t>(R.red), static_cast<int32_t>(R.green), static_cast<int32_t>(R.blue), static_cast<int32_t>(R.alpha) };
Pixel128S hS = { static_cast<int32_t>(S.red), static_cast<int32_t>(S.green), static_cast<int32_t>(S.blue), static_cast<int32_t>(S.alpha) };
// Get vectors.
Pixel128S QminusP = { hQ.red - hP.red, hQ.green - hP.green, hQ.blue - hP.blue, hQ.alpha - hP.alpha };
Pixel128S SminusR = { hS.red - hR.red, hS.green - hR.green, hS.blue - hR.blue, hS.alpha - hR.alpha };
// Multiply colors.
hP.red *= wordWidth;
hP.green *= wordWidth;
hP.blue *= wordWidth;
hP.alpha *= wordWidth;
hR.red *= wordWidth;
hR.green *= wordWidth;
hR.blue *= wordWidth;
hR.alpha *= wordWidth;
if (bpp == 2)
{
// Loop through pixels to achieve results.
for (uint32_t x = 0; x < wordWidth; x++)
{
Pixel128S result = { 4 * hP.red, 4 * hP.green, 4 * hP.blue, 4 * hP.alpha };
Pixel128S dY = { hR.red - hP.red, hR.green - hP.green, hR.blue - hP.blue, hR.alpha - hP.alpha };
for (uint32_t y = 0; y < wordHeight; y++)
{
pPixel[y * wordWidth + x].red = static_cast<int32_t>((result.red >> 7) + (result.red >> 2));
pPixel[y * wordWidth + x].green = static_cast<int32_t>((result.green >> 7) + (result.green >> 2));
pPixel[y * wordWidth + x].blue = static_cast<int32_t>((result.blue >> 7) + (result.blue >> 2));
pPixel[y * wordWidth + x].alpha = static_cast<int32_t>((result.alpha >> 5) + (result.alpha >> 1));
result.red += dY.red;
result.green += dY.green;
result.blue += dY.blue;
result.alpha += dY.alpha;
}
hP.red += QminusP.red;
hP.green += QminusP.green;
hP.blue += QminusP.blue;
hP.alpha += QminusP.alpha;
hR.red += SminusR.red;
hR.green += SminusR.green;
hR.blue += SminusR.blue;
hR.alpha += SminusR.alpha;
}
}
else
{
// Loop through pixels to achieve results.
for (uint32_t y = 0; y < wordHeight; y++)
{
Pixel128S result = { 4 * hP.red, 4 * hP.green, 4 * hP.blue, 4 * hP.alpha };
Pixel128S dY = { hR.red - hP.red, hR.green - hP.green, hR.blue - hP.blue, hR.alpha - hP.alpha };
for (uint32_t x = 0; x < wordWidth; x++)
{
pPixel[y * wordWidth + x].red = static_cast<int32_t>((result.red >> 6) + (result.red >> 1));
pPixel[y * wordWidth + x].green = static_cast<int32_t>((result.green >> 6) + (result.green >> 1));
pPixel[y * wordWidth + x].blue = static_cast<int32_t>((result.blue >> 6) + (result.blue >> 1));
pPixel[y * wordWidth + x].alpha = static_cast<int32_t>((result.alpha >> 4) + (result.alpha));
result.red += dY.red;
result.green += dY.green;
result.blue += dY.blue;
result.alpha += dY.alpha;
}
hP.red += QminusP.red;
hP.green += QminusP.green;
hP.blue += QminusP.blue;
hP.alpha += QminusP.alpha;
hR.red += SminusR.red;
hR.green += SminusR.green;
hR.blue += SminusR.blue;
hR.alpha += SminusR.alpha;
}
}
}
static void unpackModulations(const PVRTCWord& word, int32_t offsetX, int32_t offsetY, int32_t modulationValues[16][8], int32_t modulationModes[16][8], uint8_t bpp)
{
uint32_t WordModMode = word.colorData & 0x1;
uint32_t ModulationBits = word.modulationData;
// Unpack differently depending on 2bpp or 4bpp modes.
if (bpp == 2)
{
if (WordModMode)
{
// determine which of the three modes are in use:
// If this is the either the H-only or V-only interpolation mode...
if (ModulationBits & 0x1)
{
// look at the "LSB" for the "centre" (V=2,H=4) texel. Its LSB is now
// actually used to indicate whether it's the H-only mode or the V-only...
// The centre texel data is the at (y==2, x==4) and so its LSB is at bit 20.
if (ModulationBits & (0x1 << 20))
{
// This is the V-only mode
WordModMode = 3;
}
else
{
// This is the H-only mode
WordModMode = 2;
}
// Create an extra bit for the centre pixel so that it looks like
// we have 2 actual bits for this texel. It makes later coding much easier.
if (ModulationBits & (0x1 << 21))
{
// set it to produce code for 1.0
ModulationBits |= (0x1 << 20);
}
else
{
// clear it to produce 0.0 code
ModulationBits &= ~(0x1 << 20);
}
} // end if H-Only or V-Only interpolation mode was chosen
if (ModulationBits & 0x2) { ModulationBits |= 0x1; /*set it*/ }
else
{
ModulationBits &= ~0x1; /*clear it*/
}
// run through all the pixels in the block. Note we can now treat all the
// "stored" values as if they have 2bits (even when they didn't!)
for (uint8_t y = 0; y < 4; y++)
{
for (uint8_t x = 0; x < 8; x++)
{
modulationModes[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = WordModMode;
// if this is a stored value...
if (((x ^ y) & 1) == 0) {modulationValues[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = ModulationBits & 3;
ModulationBits >>= 2;
}
}
} // end for y
}
// else if direct encoded 2bit mode - i.e. 1 mode bit per pixel
else
{
for (uint8_t y = 0; y < 4; y++)
{
for (uint8_t x = 0; x < 8; x++)
{
modulationModes[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = WordModMode;
/*
// double the bits so 0=> 00, and 1=>11
*/
if (ModulationBits & 1) { modulationValues[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = 0x3; }
else
{
modulationValues[static_cast<uint32_t>(x + offsetX)][static_cast<uint32_t>(y + offsetY)] = 0x0;
}
ModulationBits >>= 1;
}
} // end for y
}
}
else
{
// Much simpler than the 2bpp decompression, only two modes, so the n/8 values are set directly.
// run through all the pixels in the word.
if (WordModMode)
{
for (uint8_t y = 0; y < 4; y++)
{
for (uint8_t x = 0; x < 4; x++)
{
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = ModulationBits & 3;
// if (modulationValues==0) {}. We don't need to check 0, 0 = 0/8.
if (modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] == 1)
{ modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = 4; }
else if (modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] == 2)
{
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = 14; //+10 tells the decompressor to punch through alpha.
}
else if (modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] == 3)
{
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = 8;
}
ModulationBits >>= 2;
} // end for x
} // end for y
}
else
{
for (uint8_t y = 0; y < 4; y++)
{
for (uint8_t x = 0; x < 4; x++)
{
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] = ModulationBits & 3;
modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] *= 3;
if (modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] > 3)
{ modulationValues[static_cast<uint32_t>(y + offsetY)][static_cast<uint32_t>(x + offsetX)] -= 1; }
ModulationBits >>= 2;
} // end for x
} // end for y
}
}
}
static int32_t getModulationValues(int32_t modulationValues[16][8], int32_t modulationModes[16][8], uint32_t xPos, uint32_t yPos, uint8_t bpp)
{
if (bpp == 2)
{
const int32_t RepVals0[4] = { 0, 3, 5, 8 };
// extract the modulation value. If a simple encoding
if (modulationModes[xPos][yPos] == 0) { return RepVals0[modulationValues[xPos][yPos]]; }
else
{
// if this is a stored value
if (((xPos ^ yPos) & 1) == 0) { return RepVals0[modulationValues[xPos][yPos]]; }
// else average from the neighbours
// if H&V interpolation...
else if (modulationModes[xPos][yPos] == 1)
{
return (RepVals0[modulationValues[xPos][yPos - 1]] + RepVals0[modulationValues[xPos][yPos + 1]] + RepVals0[modulationValues[xPos - 1][yPos]] +
RepVals0[modulationValues[xPos + 1][yPos]] + 2) /
4;
}
// else if H-Only
else if (modulationModes[xPos][yPos] == 2)
{
return (RepVals0[modulationValues[xPos - 1][yPos]] + RepVals0[modulationValues[xPos + 1][yPos]] + 1) / 2;
}
// else it's V-Only
else
{
return (RepVals0[modulationValues[xPos][yPos - 1]] + RepVals0[modulationValues[xPos][yPos + 1]] + 1) / 2;
}
}
}
else if (bpp == 4)
{
return modulationValues[xPos][yPos];
}
return 0;
}
static void pvrtcGetDecompressedPixels(const PVRTCWord& P, const PVRTCWord& Q, const PVRTCWord& R, const PVRTCWord& S, Pixel32* pColorData, uint8_t bpp)
{
// 4bpp only needs 8*8 values, but 2bpp needs 16*8, so rather than wasting processor time we just statically allocate 16*8.
int32_t modulationValues[16][8];
// Only 2bpp needs this.
int32_t modulationModes[16][8];
// 4bpp only needs 16 values, but 2bpp needs 32, so rather than wasting processor time we just statically allocate 32.
Pixel128S upscaledColorA[32];
Pixel128S upscaledColorB[32];
uint32_t wordWidth = 4;
uint32_t wordHeight = 4;
if (bpp == 2) { wordWidth = 8; }
// Get the modulations from each word.
unpackModulations(P, 0, 0, modulationValues, modulationModes, bpp);
unpackModulations(Q, wordWidth, 0, modulationValues, modulationModes, bpp);
unpackModulations(R, 0, wordHeight, modulationValues, modulationModes, bpp);
unpackModulations(S, wordWidth, wordHeight, modulationValues, modulationModes, bpp);
// Bilinear upscale image data from 2x2 -> 4x4
interpolateColors(getColorA(P.colorData), getColorA(Q.colorData), getColorA(R.colorData), getColorA(S.colorData), upscaledColorA, bpp);
interpolateColors(getColorB(P.colorData), getColorB(Q.colorData), getColorB(R.colorData), getColorB(S.colorData), upscaledColorB, bpp);
for (uint32_t y = 0; y < wordHeight; y++)
{
for (uint32_t x = 0; x < wordWidth; x++)
{
int32_t mod = getModulationValues(modulationValues, modulationModes, x + wordWidth / 2, y + wordHeight / 2, bpp);
bool punchthroughAlpha = false;
if (mod > 10)
{
punchthroughAlpha = true;
mod -= 10;
}
Pixel128S result;
result.red = (upscaledColorA[y * wordWidth + x].red * (8 - mod) + upscaledColorB[y * wordWidth + x].red * mod) / 8;
result.green = (upscaledColorA[y * wordWidth + x].green * (8 - mod) + upscaledColorB[y * wordWidth + x].green * mod) / 8;
result.blue = (upscaledColorA[y * wordWidth + x].blue * (8 - mod) + upscaledColorB[y * wordWidth + x].blue * mod) / 8;
if (punchthroughAlpha) { result.alpha = 0; }
else
{
result.alpha = (upscaledColorA[y * wordWidth + x].alpha * (8 - mod) + upscaledColorB[y * wordWidth + x].alpha * mod) / 8;
}
// Convert the 32bit precision Result to 8 bit per channel color.
if (bpp == 2)
{
pColorData[y * wordWidth + x].red = static_cast<uint8_t>(result.red);
pColorData[y * wordWidth + x].green = static_cast<uint8_t>(result.green);
pColorData[y * wordWidth + x].blue = static_cast<uint8_t>(result.blue);
pColorData[y * wordWidth + x].alpha = static_cast<uint8_t>(result.alpha);
}
else if (bpp == 4)
{
pColorData[y + x * wordHeight].red = static_cast<uint8_t>(result.red);
pColorData[y + x * wordHeight].green = static_cast<uint8_t>(result.green);
pColorData[y + x * wordHeight].blue = static_cast<uint8_t>(result.blue);
pColorData[y + x * wordHeight].alpha = static_cast<uint8_t>(result.alpha);
}
}
}
}
static uint32_t wrapWordIndex(uint32_t numWords, int word) { return ((word + numWords) % numWords); }
static bool isPowerOf2(uint32_t input)
{
uint32_t minus1;
if (!input) { return 0; }
minus1 = input - 1;
return ((input | minus1) == (input ^ minus1));
}
static uint32_t TwiddleUV(uint32_t XSize, uint32_t YSize, uint32_t XPos, uint32_t YPos)
{
// Initially assume X is the larger size.
uint32_t MinDimension = XSize;
uint32_t MaxValue = YPos;
uint32_t Twiddled = 0;
uint32_t SrcBitPos = 1;
uint32_t DstBitPos = 1;
int ShiftCount = 0;
// Check the sizes are valid.
assert(YPos < YSize);
assert(XPos < XSize);
assert(isPowerOf2(YSize));
assert(isPowerOf2(XSize));
// If Y is the larger dimension - switch the min/max values.
if (YSize < XSize)
{
MinDimension = YSize;
MaxValue = XPos;
}
// Step through all the bits in the "minimum" dimension
while (SrcBitPos < MinDimension)
{
if (YPos & SrcBitPos) { Twiddled |= DstBitPos; }
if (XPos & SrcBitPos) { Twiddled |= (DstBitPos << 1); }
SrcBitPos <<= 1;
DstBitPos <<= 2;
ShiftCount += 1;
}
// Prepend any unused bits
MaxValue >>= ShiftCount;
Twiddled |= (MaxValue << (2 * ShiftCount));
return Twiddled;
}
static void mapDecompressedData(Pixel32* pOutput, uint32_t width, const Pixel32* pWord, const PVRTCWordIndices& words, uint8_t bpp)
{
uint32_t wordWidth = 4;
uint32_t wordHeight = 4;
if (bpp == 2) { wordWidth = 8; }
for (uint32_t y = 0; y < wordHeight / 2; y++)
{
for (uint32_t x = 0; x < wordWidth / 2; x++)
{
pOutput[(((words.P[1] * wordHeight) + y + wordHeight / 2) * width + words.P[0] * wordWidth + x + wordWidth / 2)] = pWord[y * wordWidth + x]; // map P
pOutput[(((words.Q[1] * wordHeight) + y + wordHeight / 2) * width + words.Q[0] * wordWidth + x)] = pWord[y * wordWidth + x + wordWidth / 2]; // map Q
pOutput[(((words.R[1] * wordHeight) + y) * width + words.R[0] * wordWidth + x + wordWidth / 2)] = pWord[(y + wordHeight / 2) * wordWidth + x]; // map R
pOutput[(((words.S[1] * wordHeight) + y) * width + words.S[0] * wordWidth + x)] = pWord[(y + wordHeight / 2) * wordWidth + x + wordWidth / 2]; // map S
}
}
}
static uint32_t pvrtcDecompress(uint8_t* pCompressedData, Pixel32* pDecompressedData, uint32_t width, uint32_t height, uint8_t bpp)
{
uint32_t wordWidth = 4;
uint32_t wordHeight = 4;
if (bpp == 2) { wordWidth = 8; }
uint32_t* pWordMembers = (uint32_t*)pCompressedData;
Pixel32* pOutData = pDecompressedData;
// Calculate number of words
int i32NumXWords = static_cast<int>(width / wordWidth);
int i32NumYWords = static_cast<int>(height / wordHeight);
// Structs used for decompression
PVRTCWordIndices indices;
std::vector<Pixel32> pPixels(wordWidth * wordHeight * sizeof(Pixel32));
// For each row of words
for (int32_t wordY = -1; wordY < i32NumYWords - 1; wordY++)
{
// for each column of words
for (int32_t wordX = -1; wordX < i32NumXWords - 1; wordX++)
{
indices.P[0] = static_cast<int>(wrapWordIndex(i32NumXWords, wordX));
indices.P[1] = static_cast<int>(wrapWordIndex(i32NumYWords, wordY));
indices.Q[0] = static_cast<int>(wrapWordIndex(i32NumXWords, wordX + 1));
indices.Q[1] = static_cast<int>(wrapWordIndex(i32NumYWords, wordY));
indices.R[0] = static_cast<int>(wrapWordIndex(i32NumXWords, wordX));
indices.R[1] = static_cast<int>(wrapWordIndex(i32NumYWords, wordY + 1));
indices.S[0] = static_cast<int>(wrapWordIndex(i32NumXWords, wordX + 1));
indices.S[1] = static_cast<int>(wrapWordIndex(i32NumYWords, wordY + 1));
// Work out the offsets into the twiddle structs, multiply by two as there are two members per word.
uint32_t WordOffsets[4] = {
TwiddleUV(i32NumXWords, i32NumYWords, indices.P[0], indices.P[1]) * 2,
TwiddleUV(i32NumXWords, i32NumYWords, indices.Q[0], indices.Q[1]) * 2,
TwiddleUV(i32NumXWords, i32NumYWords, indices.R[0], indices.R[1]) * 2,
TwiddleUV(i32NumXWords, i32NumYWords, indices.S[0], indices.S[1]) * 2,
};
// Access individual elements to fill out PVRTCWord
PVRTCWord P, Q, R, S;
P.colorData = static_cast<uint32_t>(pWordMembers[WordOffsets[0] + 1]);
P.modulationData = static_cast<uint32_t>(pWordMembers[WordOffsets[0]]);
Q.colorData = static_cast<uint32_t>(pWordMembers[WordOffsets[1] + 1]);
Q.modulationData = static_cast<uint32_t>(pWordMembers[WordOffsets[1]]);
R.colorData = static_cast<uint32_t>(pWordMembers[WordOffsets[2] + 1]);
R.modulationData = static_cast<uint32_t>(pWordMembers[WordOffsets[2]]);
S.colorData = static_cast<uint32_t>(pWordMembers[WordOffsets[3] + 1]);
S.modulationData = static_cast<uint32_t>(pWordMembers[WordOffsets[3]]);
// assemble 4 words into struct to get decompressed pixels from
pvrtcGetDecompressedPixels(P, Q, R, S, pPixels.data(), bpp);
mapDecompressedData(pOutData, width, pPixels.data(), indices, bpp);
} // for each word
} // for each row of words
// Return the data size
return width * height / static_cast<uint32_t>((wordWidth / 2));
}
uint32_t PVRTDecompressPVRTC(const void* pCompressedData, uint32_t Do2bitMode, uint32_t XDim, uint32_t YDim, uint8_t* pResultImage)
{
// Cast the output buffer to a Pixel32 pointer.
Pixel32* pDecompressedData = (Pixel32*)pResultImage;
// Check the X and Y values are at least the minimum size.
uint32_t XTrueDim = std::max(XDim, ((Do2bitMode == 1u) ? 16u : 8u));
uint32_t YTrueDim = std::max(YDim, 8u);
// If the dimensions aren't correct, we need to create a new buffer instead of just using the provided one, as the buffer will overrun otherwise.
if (XTrueDim != XDim || YTrueDim != YDim) { pDecompressedData = new Pixel32[XTrueDim * YTrueDim]; }
// Decompress the surface.
uint32_t retval = pvrtcDecompress((uint8_t*)pCompressedData, pDecompressedData, XTrueDim, YTrueDim, uint8_t(Do2bitMode == 1 ? 2 : 4));
// If the dimensions were too small, then copy the new buffer back into the output buffer.
if (XTrueDim != XDim || YTrueDim != YDim)
{
// Loop through all the required pixels.
for (uint32_t x = 0; x < XDim; ++x)
{
for (uint32_t y = 0; y < YDim; ++y) { ((Pixel32*)pResultImage)[x + y * XDim] = pDecompressedData[x + y * XTrueDim]; }
}
// Free the temporary buffer.
delete[] pDecompressedData;
}
return retval;
}
////////////////////////////////////// ETC Compression //////////////////////////////////////
#define _CLAMP_(X, Xmin, Xmax) ((X) < (Xmax) ? ((X) < (Xmin) ? (Xmin) : (X)) : (Xmax))
uint32_t ETC_FLIP = 0x01000000;
uint32_t ETC_DIFF = 0x02000000;
const int mod[8][4] = { { 2, 8, -2, -8 }, { 5, 17, -5, -17 }, { 9, 29, -9, -29 }, { 13, 42, -13, -42 }, { 18, 60, -18, -60 }, { 24, 80, -24, -80 }, { 33, 106, -33, -106 },
{ 47, 183, -47, -183 } };
static uint32_t modifyPixel(int red, int green, int blue, int x, int y, uint32_t modBlock, int modTable)
{
int index = x * 4 + y, pixelMod;
uint32_t mostSig = modBlock << 1;
if (index < 8) { pixelMod = mod[modTable][((modBlock >> (index + 24)) & 0x1) + ((mostSig >> (index + 8)) & 0x2)]; }
else
{
pixelMod = mod[modTable][((modBlock >> (index + 8)) & 0x1) + ((mostSig >> (index - 8)) & 0x2)];
}
red = _CLAMP_(red + pixelMod, 0, 255);
green = _CLAMP_(green + pixelMod, 0, 255);
blue = _CLAMP_(blue + pixelMod, 0, 255);
return ((red << 16) + (green << 8) + blue) | 0xff000000;
}
static uint32_t ETCTextureDecompress(const void* pSrcData, uint32_t x, uint32_t y, void* pDestData, uint32_t /*nMode*/)
{
uint32_t* output;
uint32_t blockTop, blockBot;
const uint32_t* input = static_cast<const uint32_t*>(pSrcData);
unsigned char red1, green1, blue1, red2, green2, blue2;
bool bFlip, bDiff;
int modtable1, modtable2;
for (uint32_t i = 0; i < y; i += 4)
{
for (uint32_t m = 0; m < x; m += 4)
{
blockTop = *(input++);
blockBot = *(input++);
output = (uint32_t*)pDestData + i * x + m;
// check flipbit
bFlip = (blockTop & ETC_FLIP) != 0;
bDiff = (blockTop & ETC_DIFF) != 0;
if (bDiff)
{
// differential mode 5 color bits + 3 difference bits
// get base color for subblock 1
blue1 = static_cast<unsigned char>((blockTop & 0xf80000) >> 16u);
green1 = static_cast<unsigned char>((blockTop & 0xf800) >> 8u);
red1 = static_cast<unsigned char>(blockTop & 0xf8);
// get differential color for subblock 2
signed char blues = static_cast<signed char>(blue1 >> 3) + (static_cast<signed char>((blockTop & 0x70000) >> 11) >> 5);
signed char greens = static_cast<signed char>(green1 >> 3) + (static_cast<signed char>((blockTop & 0x700) >> 3) >> 5);
signed char reds = static_cast<signed char>(red1 >> 3) + (static_cast<signed char>((blockTop & 0x7) << 5) >> 5);
blue2 = static_cast<unsigned char>(blues);
green2 = static_cast<unsigned char>(greens);
red2 = static_cast<unsigned char>(reds);
red1 = static_cast<unsigned char>(red1 + (red1 >> 5u)); // copy bits to lower sig
green1 = static_cast<unsigned char>(green1 + (green1 >> 5u)); // copy bits to lower sig
blue1 = static_cast<unsigned char>(blue1 + (blue1 >> 5u)); // copy bits to lower sig
red2 = static_cast<unsigned char>((red2 << 3u) + (red2 >> 2u)); // copy bits to lower sig
green2 = static_cast<unsigned char>((green2 << 3u) + (green2 >> 2u)); // copy bits to lower sig
blue2 = static_cast<unsigned char>((blue2 << 3u) + (blue2 >> 2u)); // copy bits to lower sig
}
else
{
// individual mode 4 + 4 color bits
// get base color for subblock 1
blue1 = static_cast<unsigned char>((blockTop & 0xf00000) >> 16);
blue1 = static_cast<unsigned char>(blue1 + (blue1 >> 4)); // copy bits to lower sig
green1 = static_cast<unsigned char>((blockTop & 0xf000) >> 8);
green1 = static_cast<unsigned char>(green1 + (green1 >> 4)); // copy bits to lower sig
red1 = static_cast<unsigned char>(blockTop & 0xf0);
red1 = static_cast<unsigned char>(red1 + (red1 >> 4)); // copy bits to lower sig
// get base color for subblock 2
blue2 = static_cast<unsigned char>((blockTop & 0xf0000) >> 12);
blue2 = static_cast<unsigned char>(blue2 + (blue2 >> 4)); // copy bits to lower sig
green2 = static_cast<unsigned char>((blockTop & 0xf00) >> 4);
green2 = static_cast<unsigned char>(green2 + (green2 >> 4)); // copy bits to lower sig
red2 = static_cast<unsigned char>((blockTop & 0xf) << 4);
red2 = static_cast<unsigned char>(red2 + (red2 >> 4)); // copy bits to lower sig
}
// get the modtables for each subblock
modtable1 = static_cast<int>((blockTop >> 29) & 0x7);
modtable2 = static_cast<int>((blockTop >> 26) & 0x7);
if (!bFlip)
{
// 2 2x4 blocks side by side
for (uint8_t j = 0; j < 4; j++) // vertical
{
for (uint8_t k = 0; k < 2; k++) // horizontal
{
*(output + j * x + k) = modifyPixel(red1, green1, blue1, k, j, blockBot, modtable1);
*(output + j * x + k + 2) = modifyPixel(red2, green2, blue2, k + 2, j, blockBot, modtable2);
}
}
}
else
{
// 2 4x2 blocks on top of each other
for (uint8_t j = 0; j < 2; j++)
{
for (uint8_t k = 0; k < 4; k++)
{
*(output + j * x + k) = modifyPixel(red1, green1, blue1, k, j, blockBot, modtable1);
*(output + (j + 2) * x + k) = modifyPixel(red2, green2, blue2, k, j + 2, blockBot, modtable2);
}
}
}
}
}
return x * y / 2;
}
uint32_t PVRTDecompressETC(const void* pSrcData, uint32_t x, uint32_t y, void* pDestData, uint32_t nMode)
{
uint32_t i32read;
if (x < ETC_MIN_TEXWIDTH || y < ETC_MIN_TEXHEIGHT)
{
// decompress into a buffer big enough to take the minimum size
char* pTempBuffer = new char[std::max<uint32_t>(x, ETC_MIN_TEXWIDTH) * std::max<uint32_t>(y, ETC_MIN_TEXHEIGHT) * 4];
i32read = ETCTextureDecompress(pSrcData, std::max<uint32_t>(x, ETC_MIN_TEXWIDTH), std::max<uint32_t>(y, ETC_MIN_TEXHEIGHT), pTempBuffer, nMode);
for (uint32_t i = 0; i < y; i++)
{
// copy from larger temp buffer to output data
memcpy(static_cast<char*>(pDestData) + i * x * 4, pTempBuffer + std::max<uint32_t>(x, ETC_MIN_TEXWIDTH) * 4 * i, x * 4);
}
delete[] pTempBuffer;
}
else // decompress larger MIP levels straight into the output data
{
i32read = ETCTextureDecompress(pSrcData, x, y, pDestData, nMode);
}
// swap r and b channels
unsigned char *pSwap = static_cast<unsigned char*>(pDestData), swap;
for (uint32_t i = 0; i < y; i++)
for (uint32_t j = 0; j < x; j++)
{
swap = pSwap[0];
pSwap[0] = pSwap[2];
pSwap[2] = swap;
pSwap += 4;
}
return i32read;
}
} // namespace pvr
//!\endcond

28
extlib/PowerVR/PVRTDecompress.h vendored Normal file
View File

@ -0,0 +1,28 @@
/*!
\brief Contains functions to decompress PVRTC or ETC formats into RGBA8888.
\file PVRCore/texture/PVRTDecompress.h
\author PowerVR by Imagination, Developer Technology Team
\copyright Copyright (c) Imagination Technologies Limited.
*/
#pragma once
#include <stdint.h>
namespace pvr {
/// <summary>Decompresses PVRTC to RGBA 8888.</summary>
/// <param name="compressedData">The PVRTC texture data to decompress</param>
/// <param name="do2bitMode">Signifies whether the data is PVRTC2 or PVRTC4</param>
/// <param name="xDim">X dimension of the texture</param>
/// <param name="yDim">Y dimension of the texture</param>
/// <param name="outResultImage">The decompressed texture data</param>
/// <returns>Return the amount of data that was decompressed.</returns>
uint32_t PVRTDecompressPVRTC(const void* compressedData, uint32_t do2bitMode, uint32_t xDim, uint32_t yDim, uint8_t* outResultImage);
/// <summary>Decompresses ETC to RGBA 8888.</summary>
/// <param name="srcData">The ETC texture data to decompress</param>
/// <param name="xDim">X dimension of the texture</param>
/// <param name="yDim">Y dimension of the texture</param>
/// <param name="dstData">The decompressed texture data</param>
/// <param name="mode">The format of the data</param>
/// <returns>Return The number of bytes of ETC data decompressed</returns>
uint32_t PVRTDecompressETC(const void* srcData, uint32_t xDim, uint32_t yDim, void* dstData, uint32_t mode);
} // namespace pvr

View File

@ -0,0 +1,13 @@
This is a modified subset of the original PowerVR Native SDK.
Commit c1605c99281797e5cd4c8439e1bc679706bbb311
Updated gradle API usage.
The following changes have been made to the original:
- Added CMakeLists.txt.
- Only the PVRTC decompressor is included.
To obtain the original PowerVR Native SDK, see the GitHub repository:
- https://github.com/powervr-graphics/Native_SDK

View File

@ -197,6 +197,11 @@ IF(NOT ZLIB_LIBRARY)
ENDIF(NOT ZLIB_LIBRARY)
TARGET_LINK_LIBRARIES(rptexture PRIVATE ${ZLIB_LIBRARY})
# PowerVR Native SDK
IF(ENABLE_PVRTC)
TARGET_LINK_LIBRARIES(rptexture PRIVATE pvrtc)
ENDIF(ENABLE_PVRTC)
# Other libraries.
IF(WIN32)
# libwin32common

View File

@ -12,4 +12,7 @@
/* Define to 1 if librpbase RomFields support should be enabled. */
#define ENABLE_LIBRPBASE_ROMFIELDS 1
/* Define to 1 if PVRTC decompression should be enabled. */
#define ENABLE_PVRTC 1
#endif /* __ROMPROPERTIES_LIBRPTEXTURE_CONFIG_H__ */

View File

@ -10,6 +10,8 @@
#define __ROMPROPERTIES_LIBRPTEXTURE_DECODER_IMAGEDECODER_HPP__
#include "config.librpbase.h"
#include "config.librptexture.h"
#include "common.h"
#include "cpu_dispatch.h"
@ -667,29 +669,22 @@ rp_image *fromETC2_RGBA(int width, int height,
rp_image *fromETC2_RGB_A1(int width, int height,
const uint8_t *RESTRICT img_buf, int img_siz);
#ifdef ENABLE_PVRTC
/* PVRTC */
/**
* Convert a PVRTC 2bpp image to rp_image.
* Convert a PVRTC 2bpp or 4bpp image to rp_image.
* @param width Image width.
* @param height Image height.
* @param img_buf PVRTC image buffer.
* @param img_siz Size of image data. [must be >= (w*h)/4]
* @param do2bitMode True for 2bpp; false for 4bpp.
* @return rp_image, or nullptr on error.
*/
rp_image *fromPVRTC_2bpp(int width, int height,
const uint8_t *RESTRICT img_buf, int img_siz);
/**
* Convert a PVRTC 2bpp image to rp_image.
* @param width Image width.
* @param height Image height.
* @param img_buf PVRTC image buffer.
* @param img_siz Size of image data. [must be >= (w*h)/2]
* @return rp_image, or nullptr on error.
*/
rp_image *fromPVRTC_4bpp(int width, int height,
const uint8_t *RESTRICT img_buf, int img_siz);
rp_image *fromPVRTC(int width, int height,
const uint8_t *RESTRICT img_buf, int img_siz,
bool do2bitMode);
#endif /* ENABLE_PVRTC */
/* BC7 */

View File

@ -6,11 +6,14 @@
* SPDX-License-Identifier: GPL-2.0-or-later *
***************************************************************************/
#include "config.librptexture.h"
#include "ImageDecoder.hpp"
#include "ImageDecoder_p.hpp"
#include "PixelConversion.hpp"
using namespace LibRpTexture::PixelConversion;
#ifdef ENABLE_PVRTC
# include "PVRTDecompress.h"
#endif /* ENABLE_PVRTC */
// References:
// - https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc.txt
@ -21,288 +24,49 @@ using namespace LibRpTexture::PixelConversion;
namespace LibRpTexture { namespace ImageDecoder {
// PVRTC data block.
union pvrtc_block {
struct {
// Modulation data.
uint32_t mod_data;
// Color B:
// - Bit 15: Opaque bit 'Q'
// - Bits 1-14:
// - If Q == 1: RGB554
// - If Q == 0: ARGB3443
// - Bit 0: Mode bit
uint16_t colorB;
// Color A:
// - Bit 15: Opaque bit 'Q'
// - Bits 0-14:
// - If Q == 1: RGB555
// - If Q == 0: ARGB3444
// NOTE: This format is the same as GCN RGB5A3.
uint16_t colorA;
};
uint64_t u64;
};
/**
* Convert color A to ARGB32.
* @param px16 Color A.
* @return ARGB32.
*/
static inline uint32_t colorAtoARGB32(uint16_t px16)
{
// Color A uses the same format as GCN RGB5A3.
return RGB5A3_to_ARGB32(px16);
}
/**
* Convert color B to ARGB32.
* @param px16 Color B.
* @return ARGB32.
*/
static inline uint32_t colorBtoARGB32(uint16_t px16)
{
// Color A is almost the same as GCN RGB5A3,
// except the blue channel is smaller.
uint32_t px32;
if (px16 & 0x8000) {
// BGR555: xRRRRRGG GGGBBBBx
// ARGB32: AAAAAAAA RRRRRRRR GGGGGGGG BBBBBBBB
px32 = 0xFF000000U; // no alpha channel
px32 |= (((px16 << 3) & 0x0000F0) | ((px16 >> 1) & 0x00000F)); // B
px32 |= (((px16 << 6) & 0x00F800) | ((px16 << 1) & 0x000700)); // G
px32 |= (((px16 << 9) & 0xF80000) | ((px16 << 4) & 0x070000)); // R
} else {
// RGB4A3: xAAARRRR GGGGBBBx
// ARGB32: AAAAAAAA RRRRRRRR GGGGGGGG BBBBBBBB
px32 = ((px16 & 0x00F0) << 4); // G
px32 |= ((px16 & 0x0F00) << 8); // R
px32 |= (px32 << 4); // Copy to the top nybble.
// Calculate the blue channel.
uint8_t b = ((px16 << 4) & 0xE0);
b |= (b >> 3);
b |= (b >> 3);
// Calculate the alpha channel.
uint8_t a = ((px16 >> 7) & 0xE0);
a |= (a >> 3);
a |= (a >> 3);
// Apply the alpha and blue channels.
px32 |= (a << 24);
px32 |= b;
}
return px32;
}
// Temporary RGBA structure that allows us to clamp it later.
// TODO: Use SSE2?
struct ColorRGBA {
int B;
int G;
int R;
int A;
};
/**
* Clamp a ColorRGBA struct and convert it to ARGB32.
* @param color ColorRGBA struct.
* @return ARGB32 value.
*/
static inline uint32_t clamp_ColorRGBA(const ColorRGBA &color)
{
uint32_t argb32 = 0;
if (color.B > 255) {
argb32 = 255;
} else if (color.B > 0) {
argb32 = color.B;
}
if (color.G > 255) {
argb32 |= (255 << 8);
} else if (color.G > 0) {
argb32 |= (color.G << 8);
}
if (color.R > 255) {
argb32 |= (255 << 16);
} else if (color.R > 0) {
argb32 |= (color.R << 16);
}
if (color.A > 255) {
argb32 |= (255 << 24);
} else if (color.A > 0) {
argb32 |= (color.A << 24);
}
return argb32;
}
/**
* Mode 0 color interpolation.
* @param colors Array containing two ARGB32 colors.
* @param mod_data 2-bit modulation data.
* @return Interpolated color.
*/
static inline uint32_t interp_colors_mode0(const uint32_t color[2], unsigned int mod_data)
{
if (mod_data == 0) {
// No modulation.
return color[0];
}
// TODO: Optimize using SSE.
argb32_t argb[2];
argb[0].u32 = color[0];
argb[1].u32 = color[1];
// Interpolation formula: Output = A + Mod*(B - A)
ColorRGBA rgba;
rgba.B = argb[1].b - argb[0].b;
rgba.G = argb[1].g - argb[0].g;
rgba.R = argb[1].r - argb[0].r;
switch (mod_data) {
default:
assert(!"Unhandled modulation data.");
return color[0];
case 1:
// Weight: 4/8
rgba.B = rgba.B / 2;
rgba.G = rgba.G / 2;
rgba.R = rgba.R / 2;
rgba.A = argb[1].a - argb[0].a;
rgba.A = rgba.A / 2;
break;
case 2:
// Weight: 4/8, punch-through alpha
// NOTE: Color values are kept as-is,
// even though A=0.
rgba.B = rgba.B / 2;
rgba.G = rgba.G / 2;
rgba.R = rgba.R / 2;
rgba.A = 0;
break;
case 3:
// Weight: 1
rgba.A = argb[1].a - argb[0].a;
break;
}
rgba.B += argb[0].b;
rgba.G += argb[0].g;
rgba.R += argb[0].r;
if (mod_data != 2) {
// TODO: Move into the switch/case?
rgba.A += argb[0].a;
}
// Clamp the color components.
return clamp_ColorRGBA(rgba);
}
/**
* Mode 1 color interpolation.
* @param colors Array containing two ARGB32 colors.
* @param mod_data 2-bit modulation data.
* @return Interpolated color.
*/
static inline uint32_t interp_colors_mode1(const uint32_t color[2], unsigned int mod_data)
{
if (mod_data == 0) {
// No modulation.
return color[0];
}
// TODO: Optimize using SSE.
argb32_t argb[2];
argb[0].u32 = color[0];
argb[1].u32 = color[1];
// Interpolation formula: Output = A + Mod*(B - A)
ColorRGBA rgba;
rgba.B = argb[1].b - argb[0].b;
rgba.G = argb[1].g - argb[0].g;
rgba.R = argb[1].r - argb[0].r;
rgba.A = argb[1].a - argb[0].a;
switch (mod_data) {
default:
assert(!"Unhandled modulation data.");
return color[0];
case 1:
// Weight: 3/8
rgba.B = rgba.B * 8 / 3;
rgba.G = rgba.G * 8 / 3;
rgba.R = rgba.R * 8 / 3;
rgba.A = rgba.A * 8 / 3;
break;
case 2:
// Weight: 5/8
rgba.B = rgba.B * 8 / 5;
rgba.G = rgba.G * 8 / 5;
rgba.R = rgba.R * 8 / 5;
rgba.A = rgba.A * 8 / 5;
break;
case 3:
// Weight: 1
break;
}
rgba.B += argb[0].b;
rgba.G += argb[0].g;
rgba.R += argb[0].r;
rgba.A += argb[0].a;
// Clamp the color components.
return clamp_ColorRGBA(rgba);
}
// Pixels are reordered (twiddled) in PVRTC. Bits of x coordinate are interleaved with bits of y.
// TODO: Optimize into lookup table.
// Reference: https://gist.github.com/andreysm/bf835e634de37c2ee48d
#define TWIDTAB(x) ( (x&1)|((x&2)<<1)|((x&4)<<2)|((x&8)<<3)|((x&16)<<4)|((x&32)<<5)|((x&64)<<6)|((x&128)<<7)|((x&256)<<8)|((x&512)<<9) )
#define TWIDOUT(x, y) ( TWIDTAB((y)) | (TWIDTAB((x)) << 1) )
/**
* Convert a PVRTC 2bpp image to rp_image.
* Convert a PVRTC 2bpp or 4bpp image to rp_image.
* @param width Image width.
* @param height Image height.
* @param img_buf ETC1 image buffer.
* @param img_buf PVRTC image buffer.
* @param img_siz Size of image data. [must be >= (w*h)/4]
* @param do2bitMode True for 2bpp; false for 4bpp.
* @return rp_image, or nullptr on error.
*/
rp_image *fromPVRTC_2bpp(int width, int height,
const uint8_t *RESTRICT img_buf, int img_siz)
rp_image *fromPVRTC(int width, int height,
const uint8_t *RESTRICT img_buf, int img_siz,
bool do2bitMode)
{
// Verify parameters.
assert(img_buf != nullptr);
assert(width > 0);
assert(height > 0);
assert(img_siz >= ((width * height) / 4));
// Expected size to be read by the PowerVR Native SDK.
const uint32_t expected_size_in = ((width * height) / (do2bitMode ? 4 : 2));
assert(img_siz >= static_cast<int>(expected_size_in));
if (!img_buf || width <= 0 || height <= 0 ||
img_siz < ((width * height) / 4))
img_siz < static_cast<int>(expected_size_in))
{
return nullptr;
}
// PVRTC 2bpp uses 8x4 tiles.
assert(width % 8 == 0);
assert(height % 4 == 0);
if (width % 8 != 0 || height % 4 != 0)
return nullptr;
// Calculate the total number of tiles.
const unsigned int tilesX = (unsigned int)(width / 8);
const unsigned int tilesY = (unsigned int)(height / 4);
// PVRTC 4bpp uses 8x4 tiles.
if (do2bitMode) {
// PVRTC 2bpp
assert(width % 8 == 0);
assert(height % 4 == 0);
if (width % 8 != 0 || height % 4 != 0)
return nullptr;
} else {
// PVRTC 4bpp
assert(width % 4 == 0);
assert(height % 4 == 0);
if (width % 4 != 0 || height % 4 != 0)
return nullptr;
}
// Create an rp_image.
rp_image *img = new rp_image(width, height, rp_image::FORMAT_ARGB32);
@ -312,128 +76,20 @@ rp_image *fromPVRTC_2bpp(int width, int height,
return nullptr;
}
// NOTE: PVRTC block indexes are twiddled.
const pvrtc_block *const pvrtc_src = reinterpret_cast<const pvrtc_block*>(img_buf);
// Temporary tile buffer.
uint32_t tileBuf[8*4];
for (unsigned int y = 0; y < tilesY; y++) {
for (unsigned int x = 0; x < tilesX; x++) {
// TODO: Endianness conversion?
const pvrtc_block *src = &pvrtc_src[TWIDOUT(x, y)];
// Get the two color values.
uint32_t color[2];
color[0] = colorAtoARGB32(src->colorA);
color[1] = colorBtoARGB32(src->colorB);
uint32_t mod_data = src->mod_data;
if (!(src->colorB & 0x01)) {
// Modulation mode 0: Each bit is 0 for A, 1 for B.
for (unsigned int i = 0; i < 32; i++, mod_data >>= 1) {
tileBuf[i] = color[mod_data & 1];
}
} else {
// Modulation mode 1: Each bit represents two pixels,
// which allows interpolation to be used.
// TODO: Verify this. There's probably some other
// interpolation between the two pixels...
// TODO: Is the interpolation correct?
// NOTE: Should be checkerboard pattern, with interpolation.
for (unsigned int i = 0; i < 32; i += 2, mod_data >>= 2) {
const uint32_t interp = interp_colors_mode1(color, mod_data & 3);
tileBuf[i+0] = interp;
tileBuf[i+1] = interp;
}
}
// Blit the tile to the main image buffer.
ImageDecoderPrivate::BlitTile<uint32_t, 8, 4>(img, tileBuf, x, y);
} }
// Set the sBIT metadata.
static const rp_image::sBIT_t sBIT = {8,8,8,0,8};
img->set_sBIT(&sBIT);
// Image has been converted.
return img;
}
/**
* Convert a PVRTC 4bpp image to rp_image.
* @param width Image width.
* @param height Image height.
* @param img_buf ETC1 image buffer.
* @param img_siz Size of image data. [must be >= (w*h)/2]
* @return rp_image, or nullptr on error.
*/
rp_image *fromPVRTC_4bpp(int width, int height,
const uint8_t *RESTRICT img_buf, int img_siz)
{
// Verify parameters.
assert(img_buf != nullptr);
assert(width > 0);
assert(height > 0);
assert(img_siz >= ((width * height) / 2));
if (!img_buf || width <= 0 || height <= 0 ||
img_siz < ((width * height) / 2))
{
return nullptr;
}
// PVRTC 4bpp uses 4x4 tiles.
assert(width % 4 == 0);
assert(height % 4 == 0);
if (width % 4 != 0 || height % 4 != 0)
return nullptr;
// Calculate the total number of tiles.
const unsigned int tilesX = (unsigned int)(width / 4);
const unsigned int tilesY = (unsigned int)(height / 4);
// Create an rp_image.
rp_image *img = new rp_image(width, height, rp_image::FORMAT_ARGB32);
if (!img->isValid()) {
// Could not allocate the image.
// Use the PowerVR Native SDK to decompress the texture.
// Return value is the size of the *input* data that was decompressed.
// TODO: Row padding?
uint32_t size = pvr::PVRTDecompressPVRTC(img_buf, do2bitMode, width, height,
static_cast<uint8_t*>(img->bits()));
assert(size == expected_size_in);
if (size != expected_size_in) {
// Read error...
delete img;
return nullptr;
}
// NOTE: PVRTC block indexes are twiddled.
const pvrtc_block *const pvrtc_src = reinterpret_cast<const pvrtc_block*>(img_buf);
// Temporary tile buffer.
uint32_t tileBuf[4*4];
for (unsigned int y = 0; y < tilesY; y++) {
for (unsigned int x = 0; x < tilesX; x++) {
// TODO: Endianness conversion?
const pvrtc_block *src = &pvrtc_src[TWIDOUT(x, y)];
// Get the two color values.
uint32_t color[2];
color[0] = colorAtoARGB32(src->colorA);
color[1] = colorBtoARGB32(src->colorB);
uint32_t mod_data = src->mod_data;
if (!(src->colorB & 0x01)) {
// Modulation mode 0.
for (unsigned int i = 0; i < 16; i++, mod_data >>= 2) {
tileBuf[i] = interp_colors_mode0(color, mod_data & 3);
}
} else {
// Modulation mode 1.
for (unsigned int i = 0; i < 16; i++, mod_data >>= 2) {
tileBuf[i] = interp_colors_mode1(color, mod_data & 3);
}
}
// Blit the tile to the main image buffer.
ImageDecoderPrivate::BlitTile<uint32_t, 4, 4>(img, tileBuf, x, y);
} }
// Set the sBIT metadata.
// TODO: Check for alpha?
static const rp_image::sBIT_t sBIT = {8,8,8,0,8};
img->set_sBIT(&sBIT);

View File

@ -11,6 +11,8 @@
* - http://cdn.imgtec.com/sdk-documentation/PVR+File+Format.Specification.pdf
*/
#include "config.librptexture.h"
#include "PowerVR3.hpp"
#include "FileFormat_p.hpp"
@ -309,16 +311,22 @@ const rp_image *PowerVR3Private::loadImage(int mip)
} else {
// Compressed format.
switch (pvr3Header.pixel_format) {
#ifdef ENABLE_PVRTC
case PVR3_PXF_PVRTC_2bpp_RGB:
case PVR3_PXF_PVRTC_2bpp_RGBA:
case PVR3_PXF_PVRTCII_2bpp:
// 2bpp formats
// 2bpp formats (PVRTC)
expected_size = width * height / 4;
break;
case PVR3_PXF_PVRTC_4bpp_RGB:
case PVR3_PXF_PVRTC_4bpp_RGBA:
case PVR3_PXF_PVRTCII_4bpp:
// 4bpp formats (PVRTC)
expected_size = width * height / 2;
break;
#endif /* ENABLE_PVRTC */
case PVR3_PXF_ETC1:
case PVR3_PXF_DXT1:
case PVR3_PXF_BC4:
@ -344,7 +352,7 @@ const rp_image *PowerVR3Private::loadImage(int mip)
default:
// TODO: ASTC, other formats that aren't actually compressed.
assert(!"Unsupported PowerVR3 compressed format.");
//assert(!"Unsupported PowerVR3 compressed format.");
return nullptr;
}
}
@ -433,12 +441,13 @@ const rp_image *PowerVR3Private::loadImage(int mip)
} else {
// Compressed format.
switch (pvr3Header.pixel_format) {
#ifdef ENABLE_PVRTC
case PVR3_PXF_PVRTC_2bpp_RGB:
case PVR3_PXF_PVRTC_2bpp_RGBA:
// PVRTC, 2bpp.
// NOTE: RGB and RGBA use the same data format.
// TODO: Mask out the alpha channel for RGB?
img = ImageDecoder::fromPVRTC_2bpp(width, height, buf.get(), expected_size);
img = ImageDecoder::fromPVRTC(width, height, buf.get(), expected_size, true);
break;
case PVR3_PXF_PVRTC_4bpp_RGB:
@ -446,8 +455,9 @@ const rp_image *PowerVR3Private::loadImage(int mip)
// PVRTC, 4bpp.
// NOTE: RGB and RGBA use the same data format.
// TODO: Mask out the alpha channel for RGB?
img = ImageDecoder::fromPVRTC_4bpp(width, height, buf.get(), expected_size);
img = ImageDecoder::fromPVRTC(width, height, buf.get(), expected_size, false);
break;
#endif /* ENABLE_PVRTC */
case PVR3_PXF_ETC1:
// ETC1-compressed texture.