Mypal68/gfx/qcms/transform.cpp
2025-04-19 19:12:57 +03:00

1286 lines
46 KiB
C++

// qcms
// Copyright (C) 2009 Mozilla Corporation
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <string.h> //memcpy
#include "qcmsint.h"
#include "chain.h"
#include "matrix.h"
#include "transform_util.h"
/* for MSVC, GCC, Intel, and Sun compilers */
#if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64)
#define X86
#endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */
/**
* AltiVec detection for PowerPC CPUs
* In case we have a method of detecting do the runtime detection.
* Otherwise statically choose the AltiVec path in case the compiler
* was told to build with AltiVec support.
*/
#if (defined(__POWERPC__) || defined(__powerpc__))
#if defined(__linux__)
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <elf.h>
#include <linux/auxvec.h>
#include <asm/cputable.h>
#include <link.h>
static inline bool have_altivec() {
static int available = -1;
int new_avail = 0;
ElfW(auxv_t) auxv;
ssize_t count;
int fd, i;
if (available != -1)
return (available != 0 ? true : false);
fd = open("/proc/self/auxv", O_RDONLY);
if (fd < 0)
goto out;
do {
count = read(fd, &auxv, sizeof(auxv));
if (count < 0)
goto out_close;
if (auxv.a_type == AT_HWCAP) {
new_avail = !!(auxv.a_un.a_val & PPC_FEATURE_HAS_ALTIVEC);
goto out_close;
}
} while (auxv.a_type != AT_NULL);
out_close:
close(fd);
out:
available = new_avail;
return (available != 0 ? true : false);
}
#elif defined(__APPLE__) && defined(__MACH__)
#include <sys/sysctl.h>
/**
* rip-off from ffmpeg AltiVec detection code.
* this code also appears on Apple's AltiVec pages.
*/
static inline bool have_altivec() {
int sels[2] = {CTL_HW, HW_VECTORUNIT};
static int available = -1;
size_t len = sizeof(available);
int err;
if (available != -1)
return (available != 0 ? true : false);
err = sysctl(sels, 2, &available, &len, NULL, 0);
if (err == 0)
if (available != 0)
return true;
return false;
}
#elif defined(__ALTIVEC__) || defined(__APPLE_ALTIVEC__)
#define have_altivec() true
#else
#define have_altivec() false
#endif
#endif // (defined(__POWERPC__) || defined(__powerpc__))
// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
// This is just an approximation, I am not handling all the non-linear
// aspects of the RGB to XYZ process, and assumming that the gamma correction
// has transitive property in the tranformation chain.
//
// the alghoritm:
//
// - First I build the absolute conversion matrix using
// primaries in XYZ. This matrix is next inverted
// - Then I eval the source white point across this matrix
// obtaining the coeficients of the transformation
// - Then, I apply these coeficients to the original matrix
static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs)
{
struct matrix primaries;
struct matrix primaries_invert;
struct matrix result;
struct vector white_point;
struct vector coefs;
double xn, yn;
double xr, yr;
double xg, yg;
double xb, yb;
xn = white.x;
yn = white.y;
if (yn == 0.0)
return matrix_invalid();
xr = primrs.red.x;
yr = primrs.red.y;
xg = primrs.green.x;
yg = primrs.green.y;
xb = primrs.blue.x;
yb = primrs.blue.y;
primaries.m[0][0] = xr;
primaries.m[0][1] = xg;
primaries.m[0][2] = xb;
primaries.m[1][0] = yr;
primaries.m[1][1] = yg;
primaries.m[1][2] = yb;
primaries.m[2][0] = 1 - xr - yr;
primaries.m[2][1] = 1 - xg - yg;
primaries.m[2][2] = 1 - xb - yb;
primaries.invalid = false;
white_point.v[0] = xn/yn;
white_point.v[1] = 1.;
white_point.v[2] = (1.0-xn-yn)/yn;
primaries_invert = matrix_invert(primaries);
if (primaries_invert.invalid) {
return matrix_invalid();
}
coefs = matrix_eval(primaries_invert, white_point);
result.m[0][0] = coefs.v[0]*xr;
result.m[0][1] = coefs.v[1]*xg;
result.m[0][2] = coefs.v[2]*xb;
result.m[1][0] = coefs.v[0]*yr;
result.m[1][1] = coefs.v[1]*yg;
result.m[1][2] = coefs.v[2]*yb;
result.m[2][0] = coefs.v[0]*(1.-xr-yr);
result.m[2][1] = coefs.v[1]*(1.-xg-yg);
result.m[2][2] = coefs.v[2]*(1.-xb-yb);
result.invalid = primaries_invert.invalid;
return result;
}
struct CIE_XYZ {
double X;
double Y;
double Z;
};
/* CIE Illuminant D50 */
static const struct CIE_XYZ D50_XYZ = {
0.9642,
1.0000,
0.8249
};
/* from lcms: xyY2XYZ()
* corresponds to argyll: icmYxy2XYZ() */
static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source)
{
struct CIE_XYZ dest;
dest.X = (source.x / source.y) * source.Y;
dest.Y = source.Y;
dest.Z = ((1 - source.x - source.y) / source.y) * source.Y;
return dest;
}
/* from lcms: ComputeChromaticAdaption */
// Compute chromatic adaption matrix using chad as cone matrix
static struct matrix
compute_chromatic_adaption(struct CIE_XYZ source_white_point,
struct CIE_XYZ dest_white_point,
struct matrix chad)
{
struct matrix chad_inv;
struct vector cone_source_XYZ, cone_source_rgb;
struct vector cone_dest_XYZ, cone_dest_rgb;
struct matrix cone, tmp;
tmp = chad;
chad_inv = matrix_invert(tmp);
if (chad_inv.invalid) {
return matrix_invalid();
}
cone_source_XYZ.v[0] = source_white_point.X;
cone_source_XYZ.v[1] = source_white_point.Y;
cone_source_XYZ.v[2] = source_white_point.Z;
cone_dest_XYZ.v[0] = dest_white_point.X;
cone_dest_XYZ.v[1] = dest_white_point.Y;
cone_dest_XYZ.v[2] = dest_white_point.Z;
cone_source_rgb = matrix_eval(chad, cone_source_XYZ);
cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ);
cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0];
cone.m[0][1] = 0;
cone.m[0][2] = 0;
cone.m[1][0] = 0;
cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1];
cone.m[1][2] = 0;
cone.m[2][0] = 0;
cone.m[2][1] = 0;
cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2];
cone.invalid = false;
// Normalize
return matrix_multiply(chad_inv, matrix_multiply(cone, chad));
}
/* from lcms: cmsAdaptionMatrix */
// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
// Bradford is assumed
static struct matrix
adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination)
{
struct matrix lam_rigg = {{ // Bradford matrix
{ 0.8951f, 0.2664f, -0.1614f },
{ -0.7502f, 1.7135f, 0.0367f },
{ 0.0389f, -0.0685f, 1.0296f }
}};
return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg);
}
/* from lcms: cmsAdaptMatrixToD50 */
static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt)
{
struct CIE_XYZ Dn;
struct matrix Bradford;
if (source_white_pt.y == 0.0) {
return matrix_invalid();
}
Dn = xyY2XYZ(source_white_pt);
Bradford = adaption_matrix(Dn, D50_XYZ);
if (Bradford.invalid) {
return matrix_invalid();
}
return matrix_multiply(Bradford, r);
}
bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries)
{
struct matrix colorants;
colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
colorants = adapt_matrix_to_D50(colorants, white_point);
if (colorants.invalid)
return false;
/* note: there's a transpose type of operation going on here */
profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]);
profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]);
profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]);
profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]);
profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]);
profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]);
profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]);
profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]);
profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]);
return true;
}
bool get_rgb_colorants(struct matrix *colorants, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries)
{
*colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries);
*colorants = adapt_matrix_to_D50(*colorants, white_point);
return (colorants->invalid ? true : false);
}
#if 0
static void qcms_transform_data_rgb_out_pow(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
int i;
const float (*mat)[4] = transform->matrix;
for (i=0; i<length; i++) {
unsigned char device_r = *src++;
unsigned char device_g = *src++;
unsigned char device_b = *src++;
float linear_r = transform->input_gamma_table_r[device_r];
float linear_g = transform->input_gamma_table_g[device_g];
float linear_b = transform->input_gamma_table_b[device_b];
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
float out_device_r = pow(out_linear_r, transform->out_gamma_r);
float out_device_g = pow(out_linear_g, transform->out_gamma_g);
float out_device_b = pow(out_linear_b, transform->out_gamma_b);
dest[OUTPUT_R_INDEX] = clamp_u8(255*out_device_r);
dest[OUTPUT_G_INDEX] = clamp_u8(255*out_device_g);
dest[OUTPUT_B_INDEX] = clamp_u8(255*out_device_b);
dest += RGB_OUTPUT_COMPONENTS;
}
}
#endif
/* Alpha is not corrected.
A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If
RGB Is?" Tech Memo 17 (December 14, 1998).
See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf
*/
template <size_t kRIndex, size_t kGIndex, size_t kBIndex,
size_t kInAIndex = NO_A_INDEX, size_t kOutAIndex = kInAIndex>
static void qcms_transform_data_gray_template_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
const unsigned int components = A_INDEX_COMPONENTS(kOutAIndex);
unsigned int i;
for (i = 0; i < length; i++) {
float out_device_r, out_device_g, out_device_b;
unsigned char device = *src++;
unsigned char alpha = 0xFF;
if (kInAIndex != NO_A_INDEX) {
alpha = *src++;
}
float linear = transform->input_gamma_table_gray[device];
out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
dest[kRIndex] = clamp_u8(out_device_r*255);
dest[kGIndex] = clamp_u8(out_device_g*255);
dest[kBIndex] = clamp_u8(out_device_b*255);
if (kOutAIndex != NO_A_INDEX) {
dest[kOutAIndex] = alpha;
}
dest += components;
}
}
static void qcms_transform_data_gray_out_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_lut<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_gray_rgba_out_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_lut<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, NO_A_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_gray_bgra_out_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_lut<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, NO_A_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_graya_rgba_out_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_lut<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_graya_bgra_out_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_lut<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}
template <size_t kRIndex, size_t kGIndex, size_t kBIndex,
size_t kInAIndex = NO_A_INDEX, size_t kOutAIndex = kInAIndex>
static void qcms_transform_data_gray_template_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
const unsigned int components = A_INDEX_COMPONENTS(kOutAIndex);
unsigned int i;
for (i = 0; i < length; i++) {
unsigned char device = *src++;
unsigned char alpha = 0xFF;
if (kInAIndex != NO_A_INDEX) {
alpha = *src++;
}
uint16_t gray;
float linear = transform->input_gamma_table_gray[device];
/* we could round here... */
gray = linear * PRECACHE_OUTPUT_MAX;
dest[kRIndex] = transform->output_table_r->data[gray];
dest[kGIndex] = transform->output_table_g->data[gray];
dest[kBIndex] = transform->output_table_b->data[gray];
if (kOutAIndex != NO_A_INDEX) {
dest[kOutAIndex] = alpha;
}
dest += components;
}
}
static void qcms_transform_data_gray_out_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_precache<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_gray_rgba_out_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_precache<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, NO_A_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_gray_bgra_out_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_precache<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, NO_A_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_graya_rgba_out_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_precache<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_graya_bgra_out_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_gray_template_precache<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}
#if (defined(__POWERPC__) || defined(__powerpc__) && !defined(__NO_FPRS__))
template <size_t kRIndex, size_t kGIndex, size_t kBIndex, size_t kAIndex = NO_A_INDEX>
static void qcms_transform_data_template_lut_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
const unsigned int components = A_INDEX_COMPONENTS(kAIndex);
unsigned int i;
const float (*mat)[4] = transform->matrix;
for (i = 0; i < length; i++) {
unsigned char device_r = src[kRIndex];
unsigned char device_g = src[kGIndex];
unsigned char device_b = src[kBIndex];
unsigned char alpha;
if (kAIndex != NO_A_INDEX) {
alpha = src[kAIndex];
}
src += components;
uint16_t r, g, b;
float linear_r = transform->input_gamma_table_r[device_r];
float linear_g = transform->input_gamma_table_g[device_g];
float linear_b = transform->input_gamma_table_b[device_b];
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
out_linear_r = clamp_float(out_linear_r);
out_linear_g = clamp_float(out_linear_g);
out_linear_b = clamp_float(out_linear_b);
/* we could round here... */
r = out_linear_r * PRECACHE_OUTPUT_MAX;
g = out_linear_g * PRECACHE_OUTPUT_MAX;
b = out_linear_b * PRECACHE_OUTPUT_MAX;
dest[kRIndex] = transform->output_table_r->data[r];
dest[kGIndex] = transform->output_table_g->data[g];
dest[kBIndex] = transform->output_table_b->data[b];
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = alpha;
}
dest += components;
}
}
void qcms_transform_data_rgb_out_lut_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_template_lut_precache<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX>(transform, src, dest, length);
}
void qcms_transform_data_rgba_out_lut_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_template_lut_precache<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
void qcms_transform_data_bgra_out_lut_precache(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_template_lut_precache<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}
#endif
// Not used
/*
static void qcms_transform_data_clut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) {
unsigned int i;
int xy_len = 1;
int x_len = transform->grid_size;
int len = x_len * x_len;
const float* r_table = transform->r_clut;
const float* g_table = transform->g_clut;
const float* b_table = transform->b_clut;
for (i = 0; i < length; i++) {
unsigned char in_r = *src++;
unsigned char in_g = *src++;
unsigned char in_b = *src++;
float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
int x = floorf(linear_r * (transform->grid_size-1));
int y = floorf(linear_g * (transform->grid_size-1));
int z = floorf(linear_b * (transform->grid_size-1));
int x_n = ceilf(linear_r * (transform->grid_size-1));
int y_n = ceilf(linear_g * (transform->grid_size-1));
int z_n = ceilf(linear_b * (transform->grid_size-1));
float x_d = linear_r * (transform->grid_size-1) - x;
float y_d = linear_g * (transform->grid_size-1) - y;
float z_d = linear_b * (transform->grid_size-1) - z;
float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d);
float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d);
float r_y1 = lerp(r_x1, r_x2, y_d);
float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d);
float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d);
float r_y2 = lerp(r_x3, r_x4, y_d);
float clut_r = lerp(r_y1, r_y2, z_d);
float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d);
float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d);
float g_y1 = lerp(g_x1, g_x2, y_d);
float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d);
float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d);
float g_y2 = lerp(g_x3, g_x4, y_d);
float clut_g = lerp(g_y1, g_y2, z_d);
float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d);
float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d);
float b_y1 = lerp(b_x1, b_x2, y_d);
float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d);
float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d);
float b_y2 = lerp(b_x3, b_x4, y_d);
float clut_b = lerp(b_y1, b_y2, z_d);
*dest++ = clamp_u8(clut_r*255.0f);
*dest++ = clamp_u8(clut_g*255.0f);
*dest++ = clamp_u8(clut_b*255.0f);
}
}
*/
static int int_div_ceil(int value, int div) {
return ((value + div - 1) / div);
}
// Using lcms' tetra interpolation algorithm.
template <size_t kRIndex, size_t kGIndex, size_t kBIndex, size_t kAIndex = NO_A_INDEX>
static void qcms_transform_data_tetra_clut_template(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) {
const unsigned int components = A_INDEX_COMPONENTS(kAIndex);
unsigned int i;
int xy_len = 1;
int x_len = transform->grid_size;
int len = x_len * x_len;
float* r_table = transform->r_clut;
float* g_table = transform->g_clut;
float* b_table = transform->b_clut;
float c0_r, c1_r, c2_r, c3_r;
float c0_g, c1_g, c2_g, c3_g;
float c0_b, c1_b, c2_b, c3_b;
float clut_r, clut_g, clut_b;
for (i = 0; i < length; i++) {
unsigned char in_r = src[kRIndex];
unsigned char in_g = src[kGIndex];
unsigned char in_b = src[kBIndex];
unsigned char in_a;
if (kAIndex != NO_A_INDEX) {
in_a = src[kAIndex];
}
src += components;
float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f;
int x = in_r * (transform->grid_size-1) / 255;
int y = in_g * (transform->grid_size-1) / 255;
int z = in_b * (transform->grid_size-1) / 255;
int x_n = int_div_ceil(in_r * (transform->grid_size-1), 255);
int y_n = int_div_ceil(in_g * (transform->grid_size-1), 255);
int z_n = int_div_ceil(in_b * (transform->grid_size-1), 255);
float rx = linear_r * (transform->grid_size-1) - x;
float ry = linear_g * (transform->grid_size-1) - y;
float rz = linear_b * (transform->grid_size-1) - z;
c0_r = CLU(r_table, x, y, z);
c0_g = CLU(g_table, x, y, z);
c0_b = CLU(b_table, x, y, z);
if( rx >= ry ) {
if (ry >= rz) { //rx >= ry && ry >= rz
c1_r = CLU(r_table, x_n, y, z) - c0_r;
c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z);
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
c1_g = CLU(g_table, x_n, y, z) - c0_g;
c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z);
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
c1_b = CLU(b_table, x_n, y, z) - c0_b;
c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z);
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
} else {
if (rx >= rz) { //rx >= rz && rz >= ry
c1_r = CLU(r_table, x_n, y, z) - c0_r;
c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z);
c1_g = CLU(g_table, x_n, y, z) - c0_g;
c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z);
c1_b = CLU(b_table, x_n, y, z) - c0_b;
c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z);
} else { //rz > rx && rx >= ry
c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n);
c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n);
c3_r = CLU(r_table, x, y, z_n) - c0_r;
c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n);
c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n);
c3_g = CLU(g_table, x, y, z_n) - c0_g;
c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n);
c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n);
c3_b = CLU(b_table, x, y, z_n) - c0_b;
}
}
} else {
if (rx >= rz) { //ry > rx && rx >= rz
c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z);
c2_r = CLU(r_table, x, y_n, z) - c0_r;
c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z);
c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z);
c2_g = CLU(g_table, x, y_n, z) - c0_g;
c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z);
c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z);
c2_b = CLU(b_table, x, y_n, z) - c0_b;
c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z);
} else {
if (ry >= rz) { //ry >= rz && rz > rx
c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
c2_r = CLU(r_table, x, y_n, z) - c0_r;
c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z);
c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
c2_g = CLU(g_table, x, y_n, z) - c0_g;
c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z);
c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
c2_b = CLU(b_table, x, y_n, z) - c0_b;
c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z);
} else { //rz > ry && ry > rx
c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n);
c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n);
c3_r = CLU(r_table, x, y, z_n) - c0_r;
c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n);
c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n);
c3_g = CLU(g_table, x, y, z_n) - c0_g;
c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n);
c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n);
c3_b = CLU(b_table, x, y, z_n) - c0_b;
}
}
}
clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz;
clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz;
clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz;
dest[kRIndex] = clamp_u8(clut_r*255.0f);
dest[kGIndex] = clamp_u8(clut_g*255.0f);
dest[kBIndex] = clamp_u8(clut_b*255.0f);
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = in_a;
}
dest += components;
}
}
static void qcms_transform_data_tetra_clut_rgb(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) {
qcms_transform_data_tetra_clut_template<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_tetra_clut_rgba(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) {
qcms_transform_data_tetra_clut_template<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
static void qcms_transform_data_tetra_clut_bgra(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length) {
qcms_transform_data_tetra_clut_template<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}
template <size_t kRIndex, size_t kGIndex, size_t kBIndex, size_t kAIndex = NO_A_INDEX>
static void qcms_transform_data_template_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
const unsigned int components = A_INDEX_COMPONENTS(kAIndex);
unsigned int i;
const float (*mat)[4] = transform->matrix;
for (i = 0; i < length; i++) {
unsigned char device_r = src[kRIndex];
unsigned char device_g = src[kGIndex];
unsigned char device_b = src[kBIndex];
unsigned char alpha;
if (kAIndex != NO_A_INDEX) {
alpha = src[kAIndex];
}
src += components;
float out_device_r, out_device_g, out_device_b;
float linear_r = transform->input_gamma_table_r[device_r];
float linear_g = transform->input_gamma_table_g[device_g];
float linear_b = transform->input_gamma_table_b[device_b];
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
out_linear_r = clamp_float(out_linear_r);
out_linear_g = clamp_float(out_linear_g);
out_linear_b = clamp_float(out_linear_b);
out_device_r = lut_interp_linear(out_linear_r,
transform->output_gamma_lut_r, transform->output_gamma_lut_r_length);
out_device_g = lut_interp_linear(out_linear_g,
transform->output_gamma_lut_g, transform->output_gamma_lut_g_length);
out_device_b = lut_interp_linear(out_linear_b,
transform->output_gamma_lut_b, transform->output_gamma_lut_b_length);
dest[kRIndex] = clamp_u8(out_device_r*255);
dest[kGIndex] = clamp_u8(out_device_g*255);
dest[kBIndex] = clamp_u8(out_device_b*255);
if (kAIndex != NO_A_INDEX) {
dest[kAIndex] = alpha;
}
dest += components;
}
}
void qcms_transform_data_rgb_out_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_template_lut<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX>(transform, src, dest, length);
}
void qcms_transform_data_rgba_out_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_template_lut<RGBA_R_INDEX, RGBA_G_INDEX, RGBA_B_INDEX, RGBA_A_INDEX>(transform, src, dest, length);
}
void qcms_transform_data_bgra_out_lut(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
qcms_transform_data_template_lut<BGRA_R_INDEX, BGRA_G_INDEX, BGRA_B_INDEX, BGRA_A_INDEX>(transform, src, dest, length);
}
#if 0
static void qcms_transform_data_rgb_out_linear(const qcms_transform *transform, const unsigned char *src, unsigned char *dest, size_t length)
{
int i;
const float (*mat)[4] = transform->matrix;
for (i = 0; i < length; i++) {
unsigned char device_r = *src++;
unsigned char device_g = *src++;
unsigned char device_b = *src++;
float linear_r = transform->input_gamma_table_r[device_r];
float linear_g = transform->input_gamma_table_g[device_g];
float linear_b = transform->input_gamma_table_b[device_b];
float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b;
float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b;
float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b;
*dest++ = clamp_u8(out_linear_r*255);
*dest++ = clamp_u8(out_linear_g*255);
*dest++ = clamp_u8(out_linear_b*255);
}
}
#endif
/*
* If users create and destroy objects on different threads, even if the same
* objects aren't used on different threads at the same time, we can still run
* in to trouble with refcounts if they aren't atomic.
*
* This can lead to us prematurely deleting the precache if threads get unlucky
* and write the wrong value to the ref count.
*/
static struct precache_output *precache_reference(struct precache_output *p)
{
qcms_atomic_increment(p->ref_count);
return p;
}
static struct precache_output *precache_create()
{
struct precache_output *p = (struct precache_output*)malloc(sizeof(struct precache_output));
if (p)
p->ref_count = 1;
return p;
}
void precache_release(struct precache_output *p)
{
if (qcms_atomic_decrement(p->ref_count) == 0) {
free(p);
}
}
#ifdef HAVE_POSIX_MEMALIGN
static qcms_transform *transform_alloc(void)
{
qcms_transform *t;
void *allocated_memory;
if (!posix_memalign(&allocated_memory, 16, sizeof(qcms_transform))) {
/* Doing a memset to initialise all bits to 'zero'*/
memset(allocated_memory, 0, sizeof(qcms_transform));
t = (qcms_transform*)allocated_memory;
return t;
} else {
return NULL;
}
}
static void transform_free(qcms_transform *t)
{
free(t);
}
#else
static qcms_transform *transform_alloc(void)
{
/* transform needs to be aligned on a 16byte boundrary */
char *original_block = (char *)calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1);
/* make room for a pointer to the block returned by calloc */
void *transform_start = original_block + sizeof(void*);
/* align transform_start */
qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf);
/* store a pointer to the block returned by calloc so that we can free it later */
void **(original_block_ptr) = (void**)transform_aligned;
if (!original_block)
return NULL;
original_block_ptr--;
*original_block_ptr = original_block;
return transform_aligned;
}
static void transform_free(qcms_transform *t)
{
/* get at the pointer to the unaligned block returned by calloc */
void **p = (void**)t;
p--;
free(*p);
}
#endif
void qcms_transform_release(qcms_transform *t)
{
/* ensure we only free the gamma tables once even if there are
* multiple references to the same data */
if (t->output_table_r)
precache_release(t->output_table_r);
if (t->output_table_g)
precache_release(t->output_table_g);
if (t->output_table_b)
precache_release(t->output_table_b);
free(t->input_gamma_table_r);
if (t->input_gamma_table_g != t->input_gamma_table_r)
free(t->input_gamma_table_g);
if (t->input_gamma_table_g != t->input_gamma_table_r &&
t->input_gamma_table_g != t->input_gamma_table_b)
free(t->input_gamma_table_b);
free(t->input_gamma_table_gray);
free(t->output_gamma_lut_r);
free(t->output_gamma_lut_g);
free(t->output_gamma_lut_b);
/* r_clut points to beginning of buffer allocated in qcms_transform_precacheLUT_float */
if (t->r_clut)
free(t->r_clut);
transform_free(t);
}
static const struct matrix bradford_matrix = {{ { 0.8951f, 0.2664f,-0.1614f},
{-0.7502f, 1.7135f, 0.0367f},
{ 0.0389f,-0.0685f, 1.0296f}},
false};
static const struct matrix bradford_matrix_inv = {{ { 0.9869929f,-0.1470543f, 0.1599627f},
{ 0.4323053f, 0.5183603f, 0.0492912f},
{-0.0085287f, 0.0400428f, 0.9684867f}},
false};
// See ICCv4 E.3
struct matrix compute_whitepoint_adaption(float X, float Y, float Z) {
float p = (0.96422f*bradford_matrix.m[0][0] + 1.000f*bradford_matrix.m[1][0] + 0.82521f*bradford_matrix.m[2][0]) /
(X*bradford_matrix.m[0][0] + Y*bradford_matrix.m[1][0] + Z*bradford_matrix.m[2][0] );
float y = (0.96422f*bradford_matrix.m[0][1] + 1.000f*bradford_matrix.m[1][1] + 0.82521f*bradford_matrix.m[2][1]) /
(X*bradford_matrix.m[0][1] + Y*bradford_matrix.m[1][1] + Z*bradford_matrix.m[2][1] );
float b = (0.96422f*bradford_matrix.m[0][2] + 1.000f*bradford_matrix.m[1][2] + 0.82521f*bradford_matrix.m[2][2]) /
(X*bradford_matrix.m[0][2] + Y*bradford_matrix.m[1][2] + Z*bradford_matrix.m[2][2] );
struct matrix white_adaption = {{ {p,0,0}, {0,y,0}, {0,0,b}}, false};
return matrix_multiply( bradford_matrix_inv, matrix_multiply(white_adaption, bradford_matrix) );
}
void qcms_profile_precache_output_transform(qcms_profile *profile)
{
/* we only support precaching on rgb profiles */
if (profile->color_space != RGB_SIGNATURE)
return;
if (qcms_supports_iccv4) {
/* don't precache since we will use the B2A LUT */
if (profile->B2A0)
return;
/* don't precache since we will use the mBA LUT */
if (profile->mBA)
return;
}
/* don't precache if we do not have the TRC curves */
if (!profile->redTRC || !profile->greenTRC || !profile->blueTRC)
return;
if (!profile->output_table_r) {
profile->output_table_r = precache_create();
if (profile->output_table_r &&
!compute_precache(profile->redTRC, profile->output_table_r->data)) {
precache_release(profile->output_table_r);
profile->output_table_r = NULL;
}
}
if (!profile->output_table_g) {
profile->output_table_g = precache_create();
if (profile->output_table_g &&
!compute_precache(profile->greenTRC, profile->output_table_g->data)) {
precache_release(profile->output_table_g);
profile->output_table_g = NULL;
}
}
if (!profile->output_table_b) {
profile->output_table_b = precache_create();
if (profile->output_table_b &&
!compute_precache(profile->blueTRC, profile->output_table_b->data)) {
precache_release(profile->output_table_b);
profile->output_table_b = NULL;
}
}
}
/* Replace the current transformation with a LUT transformation using a given number of sample points */
qcms_transform* qcms_transform_precacheLUT_float(qcms_transform *transform, qcms_profile *in, qcms_profile *out,
int samples, qcms_data_type in_type)
{
/* The range between which 2 consecutive sample points can be used to interpolate */
uint16_t x,y,z;
uint32_t l;
uint32_t lutSize = 3 * samples * samples * samples;
float* src = NULL;
float* dest = NULL;
float* lut = NULL;
src = (float*)malloc(lutSize*sizeof(float));
dest = (float*)malloc(lutSize*sizeof(float));
if (src && dest) {
/* Prepare a list of points we want to sample */
l = 0;
for (x = 0; x < samples; x++) {
for (y = 0; y < samples; y++) {
for (z = 0; z < samples; z++) {
src[l++] = x / (float)(samples-1);
src[l++] = y / (float)(samples-1);
src[l++] = z / (float)(samples-1);
}
}
}
lut = qcms_chain_transform(in, out, src, dest, lutSize);
if (lut) {
transform->r_clut = &lut[0];
transform->g_clut = &lut[1];
transform->b_clut = &lut[2];
transform->grid_size = samples;
if (in_type == QCMS_DATA_RGBA_8) {
transform->transform_fn = qcms_transform_data_tetra_clut_rgba;
} else if (in_type == QCMS_DATA_BGRA_8) {
transform->transform_fn = qcms_transform_data_tetra_clut_bgra;
} else if (in_type == QCMS_DATA_RGB_8) {
transform->transform_fn = qcms_transform_data_tetra_clut_rgb;
}
assert(transform->transform_fn);
}
}
//XXX: qcms_modular_transform_data may return either the src or dest buffer. If so it must not be free-ed
// It will be stored in r_clut, which will be cleaned up in qcms_transform_release.
if (src && lut != src) {
free(src);
}
if (dest && lut != dest) {
free(dest);
}
if (lut == NULL) {
return NULL;
}
return transform;
}
#define NO_MEM_TRANSFORM NULL
qcms_transform* qcms_transform_create(
qcms_profile *in, qcms_data_type in_type,
qcms_profile *out, qcms_data_type out_type,
qcms_intent intent)
{
// Ensure the requested input and output types make sense.
bool match = false;
if (in_type == QCMS_DATA_RGB_8) {
match = out_type == QCMS_DATA_RGB_8;
} else if (in_type == QCMS_DATA_RGBA_8) {
match = out_type == QCMS_DATA_RGBA_8;
} else if (in_type == QCMS_DATA_BGRA_8) {
match = out_type == QCMS_DATA_BGRA_8;
} else if (in_type == QCMS_DATA_GRAY_8) {
match = out_type == QCMS_DATA_RGB_8 || out_type == QCMS_DATA_RGBA_8 || out_type == QCMS_DATA_BGRA_8;
} else if (in_type == QCMS_DATA_GRAYA_8) {
match = out_type == QCMS_DATA_RGBA_8 || out_type == QCMS_DATA_BGRA_8;
}
if (!match) {
assert(0 && "input/output type");
return NULL;
}
qcms_transform *transform = transform_alloc();
if (!transform) {
return NULL;
}
bool precache = false;
if (out->output_table_r &&
out->output_table_g &&
out->output_table_b) {
precache = true;
}
// This precache assumes RGB_SIGNATURE (fails on GRAY_SIGNATURE, for instance)
if (qcms_supports_iccv4 &&
(in_type == QCMS_DATA_RGB_8 || in_type == QCMS_DATA_RGBA_8 || in_type == QCMS_DATA_BGRA_8) &&
(in->A2B0 || out->B2A0 || in->mAB || out->mAB))
{
// Precache the transformation to a CLUT 33x33x33 in size.
// 33 is used by many profiles and works well in pratice.
// This evenly divides 256 into blocks of 8x8x8.
// TODO For transforming small data sets of about 200x200 or less
// precaching should be avoided.
qcms_transform *result = qcms_transform_precacheLUT_float(transform, in, out, 33, in_type);
if (!result) {
assert(0 && "precacheLUT failed");
qcms_transform_release(transform);
return NULL;
}
return result;
}
if (precache) {
transform->output_table_r = precache_reference(out->output_table_r);
transform->output_table_g = precache_reference(out->output_table_g);
transform->output_table_b = precache_reference(out->output_table_b);
} else {
if (!out->redTRC || !out->greenTRC || !out->blueTRC) {
qcms_transform_release(transform);
return NO_MEM_TRANSFORM;
}
build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length);
build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length);
build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length);
if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) {
qcms_transform_release(transform);
return NO_MEM_TRANSFORM;
}
}
if (in->color_space == RGB_SIGNATURE) {
struct matrix in_matrix, out_matrix, result;
if (precache) {
#if defined(X86)
#if !defined(THE_SSE1)
if (in_type == QCMS_DATA_RGB_8) {
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2;
} else if (in_type == QCMS_DATA_RGBA_8) {
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2;
} else if (in_type == QCMS_DATA_BGRA_8) {
transform->transform_fn = qcms_transform_data_bgra_out_lut_sse2;
}
#elif !(defined(_MSC_VER) && defined(_M_AMD64)) || defined(THE_SSE1)
/* Microsoft Compiler for x64 doesn't support MMX.
* SSE code uses MMX so that we disable on x64 */
if (in_type == QCMS_DATA_RGB_8) {
transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1;
} else if (in_type == QCMS_DATA_RGBA_8) {
transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1;
} else if (in_type == QCMS_DATA_BGRA_8) {
transform->transform_fn = qcms_transform_data_bgra_out_lut_sse1;
}
#endif
#endif
#if (defined(__POWERPC__) || defined(__powerpc__) && !defined(__NO_FPRS__))
if (have_altivec()) {
if (in_type == QCMS_DATA_RGB_8) {
transform->transform_fn = qcms_transform_data_rgb_out_lut_altivec;
} else if (in_type == QCMS_DATA_RGBA_8) {
transform->transform_fn = qcms_transform_data_rgba_out_lut_altivec;
} else if (in_type == QCMS_DATA_BGRA_8) {
transform->transform_fn = qcms_transform_data_bgra_out_lut_altivec;
}
} else {
if (in_type == QCMS_DATA_RGB_8) {
transform->transform_fn = qcms_transform_data_rgb_out_lut_precache;
} else if (in_type == QCMS_DATA_RGBA_8) {
transform->transform_fn = qcms_transform_data_rgba_out_lut_precache;
} else if (in_type == QCMS_DATA_BGRA_8) {
transform->transform_fn = qcms_transform_data_bgra_out_lut_precache;
}
}
#endif
} else {
if (in_type == QCMS_DATA_RGB_8) {
transform->transform_fn = qcms_transform_data_rgb_out_lut;
} else if (in_type == QCMS_DATA_RGBA_8) {
transform->transform_fn = qcms_transform_data_rgba_out_lut;
} else if (in_type == QCMS_DATA_BGRA_8) {
transform->transform_fn = qcms_transform_data_bgra_out_lut;
}
}
//XXX: avoid duplicating tables if we can
transform->input_gamma_table_r = build_input_gamma_table(in->redTRC);
transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC);
transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC);
if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) {
qcms_transform_release(transform);
return NO_MEM_TRANSFORM;
}
/* build combined colorant matrix */
in_matrix = build_colorant_matrix(in);
out_matrix = build_colorant_matrix(out);
out_matrix = matrix_invert(out_matrix);
if (out_matrix.invalid) {
qcms_transform_release(transform);
return NULL;
}
result = matrix_multiply(out_matrix, in_matrix);
/* check for NaN values in the matrix and bail if we find any */
for (unsigned i = 0 ; i < 3 ; ++i) {
for (unsigned j = 0 ; j < 3 ; ++j) {
if (result.m[i][j] != result.m[i][j]) {
qcms_transform_release(transform);
return NULL;
}
}
}
/* store the results in column major mode
* this makes doing the multiplication with sse easier */
transform->matrix[0][0] = result.m[0][0];
transform->matrix[1][0] = result.m[0][1];
transform->matrix[2][0] = result.m[0][2];
transform->matrix[0][1] = result.m[1][0];
transform->matrix[1][1] = result.m[1][1];
transform->matrix[2][1] = result.m[1][2];
transform->matrix[0][2] = result.m[2][0];
transform->matrix[1][2] = result.m[2][1];
transform->matrix[2][2] = result.m[2][2];
} else if (in->color_space == GRAY_SIGNATURE) {
transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC);
if (!transform->input_gamma_table_gray) {
qcms_transform_release(transform);
return NO_MEM_TRANSFORM;
}
if (precache) {
if (out_type == QCMS_DATA_RGB_8) {
transform->transform_fn = qcms_transform_data_gray_out_precache;
} else if (out_type == QCMS_DATA_RGBA_8) {
if (in_type == QCMS_DATA_GRAY_8) {
transform->transform_fn = qcms_transform_data_gray_rgba_out_precache;
} else {
transform->transform_fn = qcms_transform_data_graya_rgba_out_precache;
}
} else if (out_type == QCMS_DATA_BGRA_8) {
if (in_type == QCMS_DATA_GRAY_8) {
transform->transform_fn = qcms_transform_data_gray_bgra_out_precache;
} else {
transform->transform_fn = qcms_transform_data_graya_bgra_out_precache;
}
}
} else {
if (out_type == QCMS_DATA_RGB_8) {
transform->transform_fn = qcms_transform_data_gray_out_lut;
} else if (out_type == QCMS_DATA_RGBA_8) {
if (in_type == QCMS_DATA_GRAY_8) {
transform->transform_fn = qcms_transform_data_gray_rgba_out_lut;
} else {
transform->transform_fn = qcms_transform_data_graya_rgba_out_lut;
}
} else if (out_type == QCMS_DATA_BGRA_8) {
if (in_type == QCMS_DATA_GRAY_8) {
transform->transform_fn = qcms_transform_data_gray_bgra_out_lut;
} else {
transform->transform_fn = qcms_transform_data_graya_bgra_out_lut;
}
}
}
} else {
assert(0 && "unexpected colorspace");
qcms_transform_release(transform);
return NULL;
}
assert(transform->transform_fn);
return transform;
}
#if defined(__GNUC__) && defined(__i386__)
/* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */
__attribute__((__force_align_arg_pointer__))
#endif
void qcms_transform_data(qcms_transform *transform, const void *src, void *dest, size_t length)
{
transform->transform_fn(transform, (const unsigned char*)src, (unsigned char*)dest, length);
}
bool qcms_supports_iccv4;
void qcms_enable_iccv4()
{
qcms_supports_iccv4 = true;
}