mirror of
https://github.com/AntonioND/nitro-engine.git
synced 2025-06-18 16:45:33 -04:00
1025 lines
24 KiB
C
1025 lines
24 KiB
C
// SPDX-License-Identifier: CC0-1.0
|
|
//
|
|
// SPDX-FileContributor: Antonio Niño Díaz, 2008-2022
|
|
//
|
|
// This file is part of Nitro Engine
|
|
|
|
// Nitro Engine comes with a general-purpose memory allocator. This file
|
|
// contains several tests for it.
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <nds.h>
|
|
|
|
#include <NEAlloc.h>
|
|
|
|
#define POOL_START_ADDR 0x1000000
|
|
#define POOL_END_ADDR 0x2000000
|
|
#define POOL_SIZE (POOL_END_ADDR - POOL_START_ADDR)
|
|
|
|
#define POOL_START (void *)POOL_START_ADDR
|
|
#define POOL_END (void *)POOL_END_ADDR
|
|
|
|
#define POOL_INITIALIZE() \
|
|
NEChunk *alloc; \
|
|
NE_AllocInit(&alloc, POOL_START, POOL_END);
|
|
|
|
#define POOL_DEINITIALIZE() \
|
|
NE_AllocEnd(&alloc);
|
|
|
|
#define ASSERT(cond) \
|
|
if (!(cond)) { \
|
|
printf("Line %d\n", __LINE__); \
|
|
while (1); \
|
|
}
|
|
|
|
#define ASSERT_MSG(cond, msg) \
|
|
if (!(cond)) { \
|
|
printf("Line %d: %s\n", __LINE__, msg); \
|
|
while (1); \
|
|
}
|
|
|
|
// Pointer to address
|
|
#define A(p) ((uintptr_t)p)
|
|
// Address to pointer
|
|
#define P(a) ((void *)a)
|
|
|
|
// Test that the pointer advances as expected when allocating memory, and that
|
|
// chunks that are too small are aligned to 16 bytes.
|
|
void test_alloc_align(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
uintptr_t addr = POOL_START_ADDR;
|
|
void *ptr;
|
|
|
|
ptr = NE_Alloc(alloc, 64);
|
|
ASSERT(A(ptr) == addr);
|
|
addr += 64;
|
|
|
|
ptr = NE_Alloc(alloc, 32);
|
|
ASSERT(A(ptr) == addr);
|
|
addr += 32;
|
|
|
|
ptr = NE_Alloc(alloc, 16);
|
|
ASSERT(A(ptr) == addr);
|
|
addr += 16;
|
|
|
|
ASSERT_MSG(16 == NE_ALLOC_MIN_SIZE, "Unexpected NE_ALLOC_MIN_SIZE");
|
|
|
|
ptr = NE_Alloc(alloc, 8);
|
|
ASSERT(A(ptr) == addr);
|
|
addr += NE_ALLOC_MIN_SIZE;
|
|
|
|
ptr = NE_Alloc(alloc, 4);
|
|
ASSERT(A(ptr) == addr);
|
|
addr += NE_ALLOC_MIN_SIZE;
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Test that the pointer advances as expected when allocating memory from the
|
|
// end of the pool, and that chunks that are too small are aligned to 16 bytes.
|
|
void test_alloc_from_end_align(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
uintptr_t addr = POOL_END_ADDR;
|
|
void *ptr;
|
|
|
|
addr -= 64;
|
|
ptr = NE_AllocFromEnd(alloc, 64);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
addr -= 32;
|
|
ptr = NE_AllocFromEnd(alloc, 32);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
addr -= 16;
|
|
ptr = NE_AllocFromEnd(alloc, 16);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
ASSERT_MSG(16 == NE_ALLOC_MIN_SIZE, "Unexpected NE_ALLOC_MIN_SIZE");
|
|
|
|
addr -= NE_ALLOC_MIN_SIZE;
|
|
ptr = NE_AllocFromEnd(alloc, 8);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
addr -= NE_ALLOC_MIN_SIZE;
|
|
ptr = NE_AllocFromEnd(alloc, 4);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Test that a freed chunk can be reused
|
|
void test_free(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
uintptr_t addr = POOL_START_ADDR;
|
|
|
|
void *ptr1 = NE_Alloc(alloc, 256);
|
|
ASSERT(A(ptr1) == addr);
|
|
addr += 256;
|
|
|
|
void *ptr2 = NE_Alloc(alloc, 256);
|
|
ASSERT(A(ptr2) == addr);
|
|
|
|
// Free the first chunk
|
|
int ret = NE_Free(alloc, ptr1);
|
|
ASSERT(ret == 0);
|
|
|
|
void *ptr3 = NE_Alloc(alloc, 256);
|
|
ASSERT(A(ptr3) == A(ptr1));
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Test that a freed chunk can be reused
|
|
void test_free_from_end(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
uintptr_t addr = POOL_END_ADDR;
|
|
|
|
addr -= 256;
|
|
void *ptr1 = NE_AllocFromEnd(alloc, 256);
|
|
ASSERT(A(ptr1) == addr);
|
|
|
|
addr -= 256;
|
|
void *ptr2 = NE_AllocFromEnd(alloc, 256);
|
|
ASSERT(A(ptr2) == addr);
|
|
|
|
// Free the first chunk
|
|
int ret = NE_Free(alloc, ptr1);
|
|
ASSERT(ret == 0);
|
|
|
|
void *ptr3 = NE_AllocFromEnd(alloc, 256);
|
|
ASSERT(A(ptr3) == A(ptr1));
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Several tests to lock and unlock chunks
|
|
void test_lock_unlock(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
uintptr_t addr = POOL_START_ADDR;
|
|
int ret;
|
|
|
|
// Try locking a chunk that is used
|
|
|
|
void *ptr = NE_Alloc(alloc, 256);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
ret = NE_Lock(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try to free a locked chunk
|
|
|
|
ret = NE_Free(alloc, ptr);
|
|
ASSERT(ret == -3);
|
|
|
|
// Unlock a chunk that is locked
|
|
|
|
ret = NE_Unlock(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try unlocking a chunk that is used
|
|
|
|
ret = NE_Unlock(alloc, ptr);
|
|
ASSERT(ret == -2);
|
|
|
|
// Try unlocking a chunk that has just been freed
|
|
|
|
ret = NE_Free(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Unlock(alloc, ptr);
|
|
ASSERT(ret == -2);
|
|
|
|
// Try locking a chunk that has just been freed
|
|
|
|
ret = NE_Lock(alloc, ptr);
|
|
ASSERT(ret == -2);
|
|
|
|
// Now, allocate a new chunk that uses half of the memory and lock it. Then,
|
|
// try to allocate more than half of memory and check it fails.
|
|
|
|
ptr = NE_Alloc(alloc, POOL_SIZE / 2);
|
|
ASSERT(A(ptr) == POOL_START_ADDR);
|
|
|
|
ret = NE_Lock(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
void *fail = NE_Alloc(alloc, (POOL_SIZE / 2) + 1024);
|
|
ASSERT(fail == NULL);
|
|
|
|
ret = NE_Unlock(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Tests to verify that allocation fails under some conditions
|
|
void test_alloc_fail(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
uintptr_t addr = POOL_START_ADDR;
|
|
int ret;
|
|
void *ptr;
|
|
|
|
// Try to allocate zero bytes
|
|
|
|
ptr = NE_Alloc(alloc, 0);
|
|
ASSERT(ptr == NULL);
|
|
|
|
ptr = NE_AllocFromEnd(alloc, 0);
|
|
ASSERT(ptr == NULL);
|
|
|
|
// Try to allocate the maximum size
|
|
|
|
ptr = NE_Alloc(alloc, POOL_SIZE);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
ret = NE_Free(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
ptr = NE_AllocFromEnd(alloc, POOL_SIZE);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
ret = NE_Free(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try to allocate more than the limit
|
|
|
|
void *fail = NE_Alloc(alloc, POOL_SIZE + 1);
|
|
ASSERT(fail == NULL);
|
|
|
|
fail = NE_AllocFromEnd(alloc, POOL_SIZE + 1);
|
|
ASSERT(fail == NULL);
|
|
|
|
// Fragment the memory pool and try to allocate the remaining space, which
|
|
// should fail.
|
|
|
|
ptr = NE_Alloc(alloc, POOL_SIZE / 4);
|
|
ASSERT(A(ptr) == addr);
|
|
|
|
void *ptr2 = NE_Alloc(alloc, POOL_SIZE / 2);
|
|
ASSERT(A(ptr2) == (addr + (POOL_SIZE / 4)));
|
|
|
|
ret = NE_Free(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
NEMemInfo info; // Get information about the remaining free memory
|
|
ret = NE_MemGetInformation(alloc, &info);
|
|
ASSERT(ret == 0);
|
|
|
|
ASSERT(info.free == (POOL_SIZE / 2));
|
|
|
|
fail = NE_Alloc(alloc, info.free);
|
|
ASSERT(fail == NULL);
|
|
|
|
fail = NE_AllocFromEnd(alloc, info.free);
|
|
ASSERT(fail == NULL);
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Test statistics calculation
|
|
void test_statistics(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
uintptr_t addr = POOL_START_ADDR;
|
|
int ret;
|
|
|
|
const size_t size = POOL_SIZE / 8;
|
|
|
|
// Allocate a few chunks
|
|
|
|
void *ptr1 = NE_Alloc(alloc, size);
|
|
ASSERT(A(ptr1) == addr);
|
|
addr += size;
|
|
|
|
void *ptr2 = NE_Alloc(alloc, size);
|
|
ASSERT(A(ptr2) == addr);
|
|
addr += size;
|
|
|
|
void *ptr3 = NE_Alloc(alloc, size);
|
|
ASSERT(A(ptr3) == addr);
|
|
addr += size;
|
|
|
|
void *ptr4 = NE_AllocFromEnd(alloc, size);
|
|
ASSERT(A(ptr4) == POOL_END_ADDR - size);
|
|
|
|
// Free one of them
|
|
|
|
ret = NE_Free(alloc, ptr2);
|
|
ASSERT(ret == 0);
|
|
|
|
// Lock one of them
|
|
|
|
ret = NE_Lock(alloc, ptr4);
|
|
ASSERT(ret == 0);
|
|
|
|
// Get statistics
|
|
|
|
NEMemInfo info;
|
|
ret = NE_MemGetInformation(alloc, &info);
|
|
ASSERT(ret == 0);
|
|
|
|
ASSERT(info.free == (5 * POOL_SIZE / 8));
|
|
ASSERT(info.used == (2 * POOL_SIZE / 8));
|
|
// Note: Locked memory isn't added to the total
|
|
ASSERT(info.locked == (1 * POOL_SIZE / 8));
|
|
ASSERT(info.total == (7 * POOL_SIZE / 8));
|
|
|
|
ASSERT(info.free_percent == (100 * 5 / 7));
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Count the number of chunks present in the linked list.
|
|
int count_num_chunks(NEChunk *list)
|
|
{
|
|
int count = 0;
|
|
|
|
for ( ;list != NULL; list = list->next)
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
// Verify that the linked list of chunks has consistent start and end addresses.
|
|
int verify_consistency(NEChunk *list, void *start, void *end)
|
|
{
|
|
if (list == NULL)
|
|
return 0;
|
|
|
|
// The first chunk should start at the start of the memory pool
|
|
if (list->start != start)
|
|
return -1;
|
|
|
|
for ( ; list->next != NULL; list = list->next)
|
|
{
|
|
// The end of a chunk should be the start of the next one
|
|
if (list->end != list->next->start)
|
|
return -2;
|
|
|
|
// Two free chunks should never be together
|
|
if ((list->state == NE_STATE_FREE) && (list->next->state == NE_STATE_FREE))
|
|
return -3;
|
|
}
|
|
|
|
// The last chunk should end at the end of the memory pool
|
|
if (list->end != end)
|
|
return -4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void print_list(NEChunk *list)
|
|
{
|
|
if (list == NULL)
|
|
{
|
|
printf("NULL\n");
|
|
return;
|
|
}
|
|
|
|
for ( ; list != NULL; list = list->next)
|
|
{
|
|
printf("%p-%p (%zu)\n", list->start, list->end,
|
|
(size_t)(A(list->end) - A(list->start)));
|
|
}
|
|
}
|
|
|
|
// Test that the internal linked list is in the expected state
|
|
void test_internal_list_state(void)
|
|
{
|
|
NEChunk *alloc;
|
|
int ret, count;
|
|
|
|
// Test with invalid linked list
|
|
|
|
ret = NE_AllocInit(NULL, POOL_START, POOL_END);
|
|
ASSERT(ret == -1);
|
|
|
|
// Test with switched start and end
|
|
|
|
ret = NE_AllocInit(&alloc, POOL_END, POOL_START);
|
|
ASSERT(ret == -2);
|
|
|
|
// Initialize a valid list
|
|
|
|
ret = NE_AllocInit(&alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
// Allocate a few chunks
|
|
|
|
void *ptr[10];
|
|
for (int i = 0; i < 10; i++)
|
|
{
|
|
ptr[i] = NE_Alloc(alloc, 1024);
|
|
ASSERT(A(ptr[i]) == POOL_START_ADDR + (1024 * i));
|
|
}
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 11); // 10 chunks + chunk with all remaining memory
|
|
|
|
// Free the first chunk and then the second one so that it is merged with
|
|
// the first one.
|
|
|
|
ret = NE_Free(alloc, ptr[0]);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 11);
|
|
|
|
ret = NE_Free(alloc, ptr[1]);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 10);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
// Free the last chunk so that it is merged with the remaining free memory
|
|
|
|
ret = NE_Free(alloc, ptr[9]);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 9);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, ptr[8]); // Do it again to test it
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 8);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
// Free two chunks with one chunk the middle. Then, free that chunk and see
|
|
// if the three chunks are merged into one.
|
|
|
|
ret = NE_Free(alloc, ptr[3]);
|
|
ASSERT(ret == 0);
|
|
ret = NE_Free(alloc, ptr[5]);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 8);
|
|
|
|
ret = NE_Free(alloc, ptr[4]);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 6);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
// Deallocate invalid list
|
|
|
|
ret = NE_AllocEnd(NULL);
|
|
ASSERT(ret == -1);
|
|
|
|
// Deallocate list correctly
|
|
|
|
ret = NE_AllocEnd(&alloc);
|
|
ASSERT(ret == 0);
|
|
}
|
|
|
|
// Tests to verify that a list can be filled with blocks
|
|
void test_alloc_fill(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
int ret;
|
|
int count;
|
|
size_t size = POOL_SIZE / 32;
|
|
NEMemInfo info;
|
|
|
|
// Allocate forwards
|
|
|
|
for (int i = 0; i < 32; i++)
|
|
{
|
|
uintptr_t addr = POOL_START_ADDR + size * i;
|
|
void *ptr = NE_Alloc(alloc, size);
|
|
ASSERT(ptr == (void *)addr);
|
|
}
|
|
|
|
ret = NE_MemGetInformation(alloc, &info);
|
|
ASSERT(ret == 0);
|
|
ASSERT(info.free == 0);
|
|
ASSERT(info.used == POOL_SIZE);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 32);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
for (int i = 0; i < 32; i++)
|
|
{
|
|
uintptr_t addr = POOL_START_ADDR + size * i;
|
|
ret = NE_Free(alloc, (void *)addr);
|
|
ASSERT(ret == 0);
|
|
}
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
// Allocate backwards
|
|
|
|
for (int i = 0; i < 32; i++)
|
|
{
|
|
uintptr_t addr = POOL_START_ADDR + size * (31 - i);
|
|
void *ptr = NE_AllocFromEnd(alloc, size);
|
|
ASSERT(ptr == (void *)addr);
|
|
}
|
|
|
|
ret = NE_MemGetInformation(alloc, &info);
|
|
ASSERT(ret == 0);
|
|
ASSERT(info.free == 0);
|
|
ASSERT(info.used == POOL_SIZE);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 32);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
for (int i = 0; i < 32; i++)
|
|
{
|
|
uintptr_t addr = POOL_START_ADDR + size * i;
|
|
ret = NE_Free(alloc, (void *)addr);
|
|
ASSERT(ret == 0);
|
|
}
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Try to allocate chunks at specified addresses
|
|
void test_alloc_range(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
int ret;
|
|
int count;
|
|
|
|
// Try to allocate with invalid list
|
|
|
|
ret = NE_AllocAddress(NULL, POOL_START, 1024);
|
|
ASSERT(ret == -1);
|
|
|
|
// Try to allocate invalid addresses
|
|
|
|
ret = NE_AllocAddress(alloc, NULL, 1024);
|
|
ASSERT(ret == -1);
|
|
|
|
ret = NE_AllocAddress(alloc, (void *)(POOL_START_ADDR - 1), 1024);
|
|
ASSERT(ret == -2);
|
|
|
|
ret = NE_AllocAddress(alloc, POOL_END, 1024);
|
|
ASSERT(ret == -2);
|
|
|
|
// Try to allocate zero bytes
|
|
|
|
ret = NE_AllocAddress(alloc, POOL_START, 0);
|
|
ASSERT(ret == -1);
|
|
|
|
// Try to allocate too many bytes
|
|
|
|
ret = NE_AllocAddress(alloc, POOL_START, POOL_SIZE + 1);
|
|
ASSERT(ret == -2);
|
|
|
|
// Try to allocate the maximum size, ensure that the list is one chunk long
|
|
// (it isn't needed to split it).
|
|
|
|
ret = NE_AllocAddress(alloc, POOL_START, POOL_SIZE);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, POOL_START);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try to allocate a chunk that leaves free space after the chunk
|
|
|
|
ret = NE_AllocAddress(alloc, POOL_START, POOL_SIZE / 2);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 2);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, POOL_START);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try to allocate a chunk that leaves free space before the chunk
|
|
|
|
void *half = (void *)(POOL_START_ADDR + (POOL_SIZE / 2));
|
|
ret = NE_AllocAddress(alloc, half, POOL_SIZE / 2);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 2);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, half);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try to allocate a chunk that leaves free space before and after the chunk
|
|
|
|
void *quarter = (void *)(POOL_START_ADDR + (POOL_SIZE / 4));
|
|
|
|
ret = NE_AllocAddress(alloc, quarter, POOL_SIZE / 2);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 3);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, quarter);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try to allocate in a chunk that is used
|
|
|
|
void *ptr = NE_Alloc(alloc, POOL_SIZE / 2);
|
|
ASSERT(ptr == POOL_START);
|
|
|
|
ret = NE_AllocAddress(alloc, POOL_START, POOL_SIZE / 4);
|
|
ASSERT(ret == -2);
|
|
|
|
ret = NE_Free(alloc, ptr);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try to allocate in a chunk that is free, but small
|
|
|
|
ptr = NE_AllocFromEnd(alloc, POOL_SIZE / 2);
|
|
ASSERT(ptr == half);
|
|
|
|
ret = NE_AllocAddress(alloc, POOL_START, 3 * POOL_SIZE / 4);
|
|
ASSERT(ret == -2);
|
|
|
|
ret = NE_Free(alloc, half);
|
|
ASSERT(ret == 0);
|
|
|
|
// Try to allocate in a free chunk surrounded by used chunks, to verify that
|
|
// all links between chunks are correct.
|
|
|
|
void *three_quarters = (void *)(POOL_START_ADDR + (3 * POOL_SIZE / 4));
|
|
|
|
ptr = NE_Alloc(alloc, POOL_SIZE / 4);
|
|
ASSERT(ptr == POOL_START);
|
|
|
|
ptr = NE_AllocFromEnd(alloc, POOL_SIZE / 4);
|
|
ASSERT(ptr == three_quarters);
|
|
|
|
ret = NE_AllocAddress(alloc, half, POOL_SIZE / 8);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 5);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, half);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, POOL_START);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, three_quarters);
|
|
ASSERT(ret == 0);
|
|
|
|
count = count_num_chunks(alloc);
|
|
ASSERT(count == 1);
|
|
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
ASSERT(ret == 0);
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Tests for NE_AllocFindInRange()
|
|
void test_find_range(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
int ret;
|
|
void *found;
|
|
|
|
void *half = (void *)(POOL_START_ADDR + POOL_SIZE / 2);
|
|
|
|
// Invalid arguments
|
|
|
|
found = NE_AllocFindInRange(NULL, POOL_START, POOL_END, 1024);
|
|
ASSERT(found == NULL);
|
|
|
|
found = NE_AllocFindInRange(alloc, NULL, POOL_END, 1024);
|
|
ASSERT(found == NULL);
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_START, NULL, 1024);
|
|
ASSERT(found == NULL);
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, 0);
|
|
ASSERT(found == NULL);
|
|
|
|
// A few tests with a completely empty pool
|
|
// ----------------------------------------
|
|
|
|
// Get memory from the start of a chunk
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, 1024);
|
|
ASSERT(found == POOL_START);
|
|
|
|
// Get memory from the middle of a chunk
|
|
|
|
found = NE_AllocFindInRange(alloc, half, POOL_END, 1024);
|
|
ASSERT(found == half);
|
|
|
|
// Ask for too much memory with an empty pool
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, POOL_SIZE + 1);
|
|
ASSERT(found == NULL);
|
|
|
|
found = NE_AllocFindInRange(alloc, half, POOL_END, POOL_SIZE);
|
|
ASSERT(found == NULL);
|
|
|
|
// The user requests to search in a range that starts before the memory pool
|
|
|
|
void *before_start = (void *)(POOL_START_ADDR - 1024);
|
|
|
|
found = NE_AllocFindInRange(alloc, before_start, POOL_END, POOL_SIZE);
|
|
ASSERT(found == POOL_START);
|
|
|
|
// The range requested by the user ends before the memory pool
|
|
|
|
found = NE_AllocFindInRange(alloc, before_start, POOL_START, 64);
|
|
ASSERT(found == NULL);
|
|
|
|
// The range requested by the user starts after the memory pool
|
|
|
|
void *after_end = (void *)(POOL_END_ADDR + 1024);
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_END, after_end, 64);
|
|
ASSERT(found == NULL);
|
|
|
|
// Now, fill the memory pool with a few chunks of data and run more tests
|
|
// ----------------------------------------------------------------------
|
|
|
|
void *one_eight = (void *)(POOL_START_ADDR + (POOL_SIZE / 8));
|
|
void *one_quarter = (void *)(POOL_START_ADDR + (POOL_SIZE / 4));
|
|
void *three_eights = (void *)(POOL_START_ADDR + (3 * POOL_SIZE / 8));
|
|
void *three_quarters = (void *)(POOL_START_ADDR + (3 * POOL_SIZE / 4));
|
|
void *five_eights = (void *)(POOL_START_ADDR + (5 * POOL_SIZE / 8));
|
|
|
|
size_t quarter = POOL_SIZE / 4;
|
|
|
|
// +-----------------+-----------------+-----------------+-----------------+
|
|
// | | USED | | USED |
|
|
// +-----------------+-----------------+-----------------+-----------------+
|
|
|
|
ret = NE_AllocAddress(alloc, one_quarter, quarter);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_AllocAddress(alloc, three_quarters, quarter);
|
|
ASSERT(ret == 0);
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, quarter);
|
|
ASSERT(found == POOL_START);
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, POOL_SIZE / 2);
|
|
ASSERT(found == NULL);
|
|
|
|
found = NE_AllocFindInRange(alloc, one_eight, POOL_END, quarter);
|
|
ASSERT(found == half);
|
|
|
|
found = NE_AllocFindInRange(alloc, three_eights, POOL_END, quarter);
|
|
ASSERT(found == half);
|
|
|
|
found = NE_AllocFindInRange(alloc, three_eights, POOL_END, POOL_SIZE / 2);
|
|
ASSERT(found == NULL);
|
|
|
|
found = NE_AllocFindInRange(alloc, five_eights, POOL_END, quarter);
|
|
ASSERT(found == NULL);
|
|
|
|
ret = NE_Free(alloc, one_quarter);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, three_quarters);
|
|
ASSERT(ret == 0);
|
|
|
|
// +-----------------+-----------------+-----------------+-----------------+
|
|
// | USED | | USED | |
|
|
// +-----------------+-----------------+-----------------+-----------------+
|
|
|
|
ret = NE_AllocAddress(alloc, POOL_START, quarter);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_AllocAddress(alloc, half, quarter);
|
|
ASSERT(ret == 0);
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, quarter);
|
|
ASSERT(found == one_quarter);
|
|
|
|
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, POOL_SIZE / 2);
|
|
ASSERT(found == NULL);
|
|
|
|
found = NE_AllocFindInRange(alloc, one_eight, POOL_END, quarter);
|
|
ASSERT(found == one_quarter);
|
|
|
|
found = NE_AllocFindInRange(alloc, three_eights, POOL_END, quarter);
|
|
ASSERT(found == three_quarters);
|
|
|
|
found = NE_AllocFindInRange(alloc, three_eights, POOL_END, POOL_SIZE / 2);
|
|
ASSERT(found == NULL);
|
|
|
|
found = NE_AllocFindInRange(alloc, five_eights, POOL_END, quarter);
|
|
ASSERT(found == three_quarters);
|
|
|
|
ret = NE_Free(alloc, POOL_START);
|
|
ASSERT(ret == 0);
|
|
|
|
ret = NE_Free(alloc, half);
|
|
ASSERT(ret == 0);
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
// Known random number generator to always generate the same sequence of numbers
|
|
// and make this test reproducible.
|
|
int my_rand(void)
|
|
{
|
|
static unsigned long int next = 1;
|
|
next = next * 1103515245 + 12345;
|
|
return (unsigned int)(next / 65536) % 32768;
|
|
}
|
|
|
|
// Stress test
|
|
void test_stress(void)
|
|
{
|
|
printf("%s\n", __func__);
|
|
|
|
POOL_INITIALIZE();
|
|
|
|
#define NUM_PTRS 32
|
|
|
|
int ret;
|
|
void *ptr[NUM_PTRS];
|
|
|
|
for (int i = 0; i < NUM_PTRS; i++)
|
|
ptr[i] = NULL;
|
|
|
|
for (int i = 0; i < 500000; i++)
|
|
{
|
|
unsigned int selected = my_rand() % NUM_PTRS;
|
|
|
|
if (ptr[selected] == NULL)
|
|
{
|
|
// Unallocated pointer. Allocate it. The number of chunks is too
|
|
// small to ever fill the memory with this chunk size, so it should
|
|
// always be allocated.
|
|
|
|
size_t size = (my_rand() & 0x3FFF) + 1;
|
|
|
|
void *p;
|
|
|
|
if (size & 1)
|
|
p = NE_Alloc(alloc, size);
|
|
else
|
|
p = NE_AllocFromEnd(alloc, size);
|
|
|
|
ASSERT(p != NULL);
|
|
|
|
ptr[selected] = p;
|
|
}
|
|
else
|
|
{
|
|
// Allocated pointer. Deallocate it.
|
|
ret = NE_Free(alloc, ptr[selected]);
|
|
ASSERT(ret == 0);
|
|
ptr[selected] = NULL;
|
|
}
|
|
|
|
// Verify consistency of the list
|
|
ret = verify_consistency(alloc, POOL_START, POOL_END);
|
|
if (ret != 0)
|
|
{
|
|
printf("ret = %d", ret);
|
|
print_list(alloc);
|
|
while (1);
|
|
}
|
|
}
|
|
|
|
POOL_DEINITIALIZE();
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
// This test doesn't use Nitro Engine at all. Initialize the default console
|
|
// of libnds to print the results of the tests.
|
|
consoleDemoInit();
|
|
|
|
test_alloc_align();
|
|
test_alloc_from_end_align();
|
|
test_free();
|
|
test_free_from_end();
|
|
test_lock_unlock();
|
|
test_alloc_fail();
|
|
test_statistics();
|
|
test_internal_list_state();
|
|
test_alloc_fill();
|
|
test_alloc_range();
|
|
test_find_range();
|
|
test_stress();
|
|
|
|
printf("Done!");
|
|
|
|
while (1)
|
|
swiWaitForVBlank();
|
|
|
|
return 0;
|
|
}
|