nitro-engine/tests/allocator/source/main.c
Antonio Niño Díaz 82171bbf69 chore: Simplify copyright years in notices
Instead of listing every individual year, keep only the first and last
years.
2024-03-09 01:42:29 +00:00

1025 lines
24 KiB
C

// SPDX-License-Identifier: CC0-1.0
//
// SPDX-FileContributor: Antonio Niño Díaz, 2008-2022
//
// This file is part of Nitro Engine
// Nitro Engine comes with a general-purpose memory allocator. This file
// contains several tests for it.
#include <stdio.h>
#include <nds.h>
#include <NEAlloc.h>
#define POOL_START_ADDR 0x1000000
#define POOL_END_ADDR 0x2000000
#define POOL_SIZE (POOL_END_ADDR - POOL_START_ADDR)
#define POOL_START (void *)POOL_START_ADDR
#define POOL_END (void *)POOL_END_ADDR
#define POOL_INITIALIZE() \
NEChunk *alloc; \
NE_AllocInit(&alloc, POOL_START, POOL_END);
#define POOL_DEINITIALIZE() \
NE_AllocEnd(&alloc);
#define ASSERT(cond) \
if (!(cond)) { \
printf("Line %d\n", __LINE__); \
while (1); \
}
#define ASSERT_MSG(cond, msg) \
if (!(cond)) { \
printf("Line %d: %s\n", __LINE__, msg); \
while (1); \
}
// Pointer to address
#define A(p) ((uintptr_t)p)
// Address to pointer
#define P(a) ((void *)a)
// Test that the pointer advances as expected when allocating memory, and that
// chunks that are too small are aligned to 16 bytes.
void test_alloc_align(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
uintptr_t addr = POOL_START_ADDR;
void *ptr;
ptr = NE_Alloc(alloc, 64);
ASSERT(A(ptr) == addr);
addr += 64;
ptr = NE_Alloc(alloc, 32);
ASSERT(A(ptr) == addr);
addr += 32;
ptr = NE_Alloc(alloc, 16);
ASSERT(A(ptr) == addr);
addr += 16;
ASSERT_MSG(16 == NE_ALLOC_MIN_SIZE, "Unexpected NE_ALLOC_MIN_SIZE");
ptr = NE_Alloc(alloc, 8);
ASSERT(A(ptr) == addr);
addr += NE_ALLOC_MIN_SIZE;
ptr = NE_Alloc(alloc, 4);
ASSERT(A(ptr) == addr);
addr += NE_ALLOC_MIN_SIZE;
POOL_DEINITIALIZE();
}
// Test that the pointer advances as expected when allocating memory from the
// end of the pool, and that chunks that are too small are aligned to 16 bytes.
void test_alloc_from_end_align(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
uintptr_t addr = POOL_END_ADDR;
void *ptr;
addr -= 64;
ptr = NE_AllocFromEnd(alloc, 64);
ASSERT(A(ptr) == addr);
addr -= 32;
ptr = NE_AllocFromEnd(alloc, 32);
ASSERT(A(ptr) == addr);
addr -= 16;
ptr = NE_AllocFromEnd(alloc, 16);
ASSERT(A(ptr) == addr);
ASSERT_MSG(16 == NE_ALLOC_MIN_SIZE, "Unexpected NE_ALLOC_MIN_SIZE");
addr -= NE_ALLOC_MIN_SIZE;
ptr = NE_AllocFromEnd(alloc, 8);
ASSERT(A(ptr) == addr);
addr -= NE_ALLOC_MIN_SIZE;
ptr = NE_AllocFromEnd(alloc, 4);
ASSERT(A(ptr) == addr);
POOL_DEINITIALIZE();
}
// Test that a freed chunk can be reused
void test_free(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
uintptr_t addr = POOL_START_ADDR;
void *ptr1 = NE_Alloc(alloc, 256);
ASSERT(A(ptr1) == addr);
addr += 256;
void *ptr2 = NE_Alloc(alloc, 256);
ASSERT(A(ptr2) == addr);
// Free the first chunk
int ret = NE_Free(alloc, ptr1);
ASSERT(ret == 0);
void *ptr3 = NE_Alloc(alloc, 256);
ASSERT(A(ptr3) == A(ptr1));
POOL_DEINITIALIZE();
}
// Test that a freed chunk can be reused
void test_free_from_end(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
uintptr_t addr = POOL_END_ADDR;
addr -= 256;
void *ptr1 = NE_AllocFromEnd(alloc, 256);
ASSERT(A(ptr1) == addr);
addr -= 256;
void *ptr2 = NE_AllocFromEnd(alloc, 256);
ASSERT(A(ptr2) == addr);
// Free the first chunk
int ret = NE_Free(alloc, ptr1);
ASSERT(ret == 0);
void *ptr3 = NE_AllocFromEnd(alloc, 256);
ASSERT(A(ptr3) == A(ptr1));
POOL_DEINITIALIZE();
}
// Several tests to lock and unlock chunks
void test_lock_unlock(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
uintptr_t addr = POOL_START_ADDR;
int ret;
// Try locking a chunk that is used
void *ptr = NE_Alloc(alloc, 256);
ASSERT(A(ptr) == addr);
ret = NE_Lock(alloc, ptr);
ASSERT(ret == 0);
// Try to free a locked chunk
ret = NE_Free(alloc, ptr);
ASSERT(ret == -3);
// Unlock a chunk that is locked
ret = NE_Unlock(alloc, ptr);
ASSERT(ret == 0);
// Try unlocking a chunk that is used
ret = NE_Unlock(alloc, ptr);
ASSERT(ret == -2);
// Try unlocking a chunk that has just been freed
ret = NE_Free(alloc, ptr);
ASSERT(ret == 0);
ret = NE_Unlock(alloc, ptr);
ASSERT(ret == -2);
// Try locking a chunk that has just been freed
ret = NE_Lock(alloc, ptr);
ASSERT(ret == -2);
// Now, allocate a new chunk that uses half of the memory and lock it. Then,
// try to allocate more than half of memory and check it fails.
ptr = NE_Alloc(alloc, POOL_SIZE / 2);
ASSERT(A(ptr) == POOL_START_ADDR);
ret = NE_Lock(alloc, ptr);
ASSERT(ret == 0);
void *fail = NE_Alloc(alloc, (POOL_SIZE / 2) + 1024);
ASSERT(fail == NULL);
ret = NE_Unlock(alloc, ptr);
ASSERT(ret == 0);
ret = NE_Free(alloc, ptr);
ASSERT(ret == 0);
POOL_DEINITIALIZE();
}
// Tests to verify that allocation fails under some conditions
void test_alloc_fail(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
uintptr_t addr = POOL_START_ADDR;
int ret;
void *ptr;
// Try to allocate zero bytes
ptr = NE_Alloc(alloc, 0);
ASSERT(ptr == NULL);
ptr = NE_AllocFromEnd(alloc, 0);
ASSERT(ptr == NULL);
// Try to allocate the maximum size
ptr = NE_Alloc(alloc, POOL_SIZE);
ASSERT(A(ptr) == addr);
ret = NE_Free(alloc, ptr);
ASSERT(ret == 0);
ptr = NE_AllocFromEnd(alloc, POOL_SIZE);
ASSERT(A(ptr) == addr);
ret = NE_Free(alloc, ptr);
ASSERT(ret == 0);
// Try to allocate more than the limit
void *fail = NE_Alloc(alloc, POOL_SIZE + 1);
ASSERT(fail == NULL);
fail = NE_AllocFromEnd(alloc, POOL_SIZE + 1);
ASSERT(fail == NULL);
// Fragment the memory pool and try to allocate the remaining space, which
// should fail.
ptr = NE_Alloc(alloc, POOL_SIZE / 4);
ASSERT(A(ptr) == addr);
void *ptr2 = NE_Alloc(alloc, POOL_SIZE / 2);
ASSERT(A(ptr2) == (addr + (POOL_SIZE / 4)));
ret = NE_Free(alloc, ptr);
ASSERT(ret == 0);
NEMemInfo info; // Get information about the remaining free memory
ret = NE_MemGetInformation(alloc, &info);
ASSERT(ret == 0);
ASSERT(info.free == (POOL_SIZE / 2));
fail = NE_Alloc(alloc, info.free);
ASSERT(fail == NULL);
fail = NE_AllocFromEnd(alloc, info.free);
ASSERT(fail == NULL);
POOL_DEINITIALIZE();
}
// Test statistics calculation
void test_statistics(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
uintptr_t addr = POOL_START_ADDR;
int ret;
const size_t size = POOL_SIZE / 8;
// Allocate a few chunks
void *ptr1 = NE_Alloc(alloc, size);
ASSERT(A(ptr1) == addr);
addr += size;
void *ptr2 = NE_Alloc(alloc, size);
ASSERT(A(ptr2) == addr);
addr += size;
void *ptr3 = NE_Alloc(alloc, size);
ASSERT(A(ptr3) == addr);
addr += size;
void *ptr4 = NE_AllocFromEnd(alloc, size);
ASSERT(A(ptr4) == POOL_END_ADDR - size);
// Free one of them
ret = NE_Free(alloc, ptr2);
ASSERT(ret == 0);
// Lock one of them
ret = NE_Lock(alloc, ptr4);
ASSERT(ret == 0);
// Get statistics
NEMemInfo info;
ret = NE_MemGetInformation(alloc, &info);
ASSERT(ret == 0);
ASSERT(info.free == (5 * POOL_SIZE / 8));
ASSERT(info.used == (2 * POOL_SIZE / 8));
// Note: Locked memory isn't added to the total
ASSERT(info.locked == (1 * POOL_SIZE / 8));
ASSERT(info.total == (7 * POOL_SIZE / 8));
ASSERT(info.free_percent == (100 * 5 / 7));
POOL_DEINITIALIZE();
}
// Count the number of chunks present in the linked list.
int count_num_chunks(NEChunk *list)
{
int count = 0;
for ( ;list != NULL; list = list->next)
count++;
return count;
}
// Verify that the linked list of chunks has consistent start and end addresses.
int verify_consistency(NEChunk *list, void *start, void *end)
{
if (list == NULL)
return 0;
// The first chunk should start at the start of the memory pool
if (list->start != start)
return -1;
for ( ; list->next != NULL; list = list->next)
{
// The end of a chunk should be the start of the next one
if (list->end != list->next->start)
return -2;
// Two free chunks should never be together
if ((list->state == NE_STATE_FREE) && (list->next->state == NE_STATE_FREE))
return -3;
}
// The last chunk should end at the end of the memory pool
if (list->end != end)
return -4;
return 0;
}
void print_list(NEChunk *list)
{
if (list == NULL)
{
printf("NULL\n");
return;
}
for ( ; list != NULL; list = list->next)
{
printf("%p-%p (%zu)\n", list->start, list->end,
(size_t)(A(list->end) - A(list->start)));
}
}
// Test that the internal linked list is in the expected state
void test_internal_list_state(void)
{
NEChunk *alloc;
int ret, count;
// Test with invalid linked list
ret = NE_AllocInit(NULL, POOL_START, POOL_END);
ASSERT(ret == -1);
// Test with switched start and end
ret = NE_AllocInit(&alloc, POOL_END, POOL_START);
ASSERT(ret == -2);
// Initialize a valid list
ret = NE_AllocInit(&alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 1);
// Allocate a few chunks
void *ptr[10];
for (int i = 0; i < 10; i++)
{
ptr[i] = NE_Alloc(alloc, 1024);
ASSERT(A(ptr[i]) == POOL_START_ADDR + (1024 * i));
}
count = count_num_chunks(alloc);
ASSERT(count == 11); // 10 chunks + chunk with all remaining memory
// Free the first chunk and then the second one so that it is merged with
// the first one.
ret = NE_Free(alloc, ptr[0]);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 11);
ret = NE_Free(alloc, ptr[1]);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 10);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
// Free the last chunk so that it is merged with the remaining free memory
ret = NE_Free(alloc, ptr[9]);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 9);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
ret = NE_Free(alloc, ptr[8]); // Do it again to test it
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 8);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
// Free two chunks with one chunk the middle. Then, free that chunk and see
// if the three chunks are merged into one.
ret = NE_Free(alloc, ptr[3]);
ASSERT(ret == 0);
ret = NE_Free(alloc, ptr[5]);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 8);
ret = NE_Free(alloc, ptr[4]);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 6);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
// Deallocate invalid list
ret = NE_AllocEnd(NULL);
ASSERT(ret == -1);
// Deallocate list correctly
ret = NE_AllocEnd(&alloc);
ASSERT(ret == 0);
}
// Tests to verify that a list can be filled with blocks
void test_alloc_fill(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
int ret;
int count;
size_t size = POOL_SIZE / 32;
NEMemInfo info;
// Allocate forwards
for (int i = 0; i < 32; i++)
{
uintptr_t addr = POOL_START_ADDR + size * i;
void *ptr = NE_Alloc(alloc, size);
ASSERT(ptr == (void *)addr);
}
ret = NE_MemGetInformation(alloc, &info);
ASSERT(ret == 0);
ASSERT(info.free == 0);
ASSERT(info.used == POOL_SIZE);
count = count_num_chunks(alloc);
ASSERT(count == 32);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
for (int i = 0; i < 32; i++)
{
uintptr_t addr = POOL_START_ADDR + size * i;
ret = NE_Free(alloc, (void *)addr);
ASSERT(ret == 0);
}
count = count_num_chunks(alloc);
ASSERT(count == 1);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
// Allocate backwards
for (int i = 0; i < 32; i++)
{
uintptr_t addr = POOL_START_ADDR + size * (31 - i);
void *ptr = NE_AllocFromEnd(alloc, size);
ASSERT(ptr == (void *)addr);
}
ret = NE_MemGetInformation(alloc, &info);
ASSERT(ret == 0);
ASSERT(info.free == 0);
ASSERT(info.used == POOL_SIZE);
count = count_num_chunks(alloc);
ASSERT(count == 32);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
for (int i = 0; i < 32; i++)
{
uintptr_t addr = POOL_START_ADDR + size * i;
ret = NE_Free(alloc, (void *)addr);
ASSERT(ret == 0);
}
count = count_num_chunks(alloc);
ASSERT(count == 1);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
POOL_DEINITIALIZE();
}
// Try to allocate chunks at specified addresses
void test_alloc_range(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
int ret;
int count;
// Try to allocate with invalid list
ret = NE_AllocAddress(NULL, POOL_START, 1024);
ASSERT(ret == -1);
// Try to allocate invalid addresses
ret = NE_AllocAddress(alloc, NULL, 1024);
ASSERT(ret == -1);
ret = NE_AllocAddress(alloc, (void *)(POOL_START_ADDR - 1), 1024);
ASSERT(ret == -2);
ret = NE_AllocAddress(alloc, POOL_END, 1024);
ASSERT(ret == -2);
// Try to allocate zero bytes
ret = NE_AllocAddress(alloc, POOL_START, 0);
ASSERT(ret == -1);
// Try to allocate too many bytes
ret = NE_AllocAddress(alloc, POOL_START, POOL_SIZE + 1);
ASSERT(ret == -2);
// Try to allocate the maximum size, ensure that the list is one chunk long
// (it isn't needed to split it).
ret = NE_AllocAddress(alloc, POOL_START, POOL_SIZE);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 1);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
ret = NE_Free(alloc, POOL_START);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 1);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
// Try to allocate a chunk that leaves free space after the chunk
ret = NE_AllocAddress(alloc, POOL_START, POOL_SIZE / 2);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 2);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
ret = NE_Free(alloc, POOL_START);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 1);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
// Try to allocate a chunk that leaves free space before the chunk
void *half = (void *)(POOL_START_ADDR + (POOL_SIZE / 2));
ret = NE_AllocAddress(alloc, half, POOL_SIZE / 2);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 2);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
ret = NE_Free(alloc, half);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 1);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
// Try to allocate a chunk that leaves free space before and after the chunk
void *quarter = (void *)(POOL_START_ADDR + (POOL_SIZE / 4));
ret = NE_AllocAddress(alloc, quarter, POOL_SIZE / 2);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 3);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
ret = NE_Free(alloc, quarter);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 1);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
// Try to allocate in a chunk that is used
void *ptr = NE_Alloc(alloc, POOL_SIZE / 2);
ASSERT(ptr == POOL_START);
ret = NE_AllocAddress(alloc, POOL_START, POOL_SIZE / 4);
ASSERT(ret == -2);
ret = NE_Free(alloc, ptr);
ASSERT(ret == 0);
// Try to allocate in a chunk that is free, but small
ptr = NE_AllocFromEnd(alloc, POOL_SIZE / 2);
ASSERT(ptr == half);
ret = NE_AllocAddress(alloc, POOL_START, 3 * POOL_SIZE / 4);
ASSERT(ret == -2);
ret = NE_Free(alloc, half);
ASSERT(ret == 0);
// Try to allocate in a free chunk surrounded by used chunks, to verify that
// all links between chunks are correct.
void *three_quarters = (void *)(POOL_START_ADDR + (3 * POOL_SIZE / 4));
ptr = NE_Alloc(alloc, POOL_SIZE / 4);
ASSERT(ptr == POOL_START);
ptr = NE_AllocFromEnd(alloc, POOL_SIZE / 4);
ASSERT(ptr == three_quarters);
ret = NE_AllocAddress(alloc, half, POOL_SIZE / 8);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 5);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
ret = NE_Free(alloc, half);
ASSERT(ret == 0);
ret = NE_Free(alloc, POOL_START);
ASSERT(ret == 0);
ret = NE_Free(alloc, three_quarters);
ASSERT(ret == 0);
count = count_num_chunks(alloc);
ASSERT(count == 1);
ret = verify_consistency(alloc, POOL_START, POOL_END);
ASSERT(ret == 0);
POOL_DEINITIALIZE();
}
// Tests for NE_AllocFindInRange()
void test_find_range(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
int ret;
void *found;
void *half = (void *)(POOL_START_ADDR + POOL_SIZE / 2);
// Invalid arguments
found = NE_AllocFindInRange(NULL, POOL_START, POOL_END, 1024);
ASSERT(found == NULL);
found = NE_AllocFindInRange(alloc, NULL, POOL_END, 1024);
ASSERT(found == NULL);
found = NE_AllocFindInRange(alloc, POOL_START, NULL, 1024);
ASSERT(found == NULL);
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, 0);
ASSERT(found == NULL);
// A few tests with a completely empty pool
// ----------------------------------------
// Get memory from the start of a chunk
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, 1024);
ASSERT(found == POOL_START);
// Get memory from the middle of a chunk
found = NE_AllocFindInRange(alloc, half, POOL_END, 1024);
ASSERT(found == half);
// Ask for too much memory with an empty pool
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, POOL_SIZE + 1);
ASSERT(found == NULL);
found = NE_AllocFindInRange(alloc, half, POOL_END, POOL_SIZE);
ASSERT(found == NULL);
// The user requests to search in a range that starts before the memory pool
void *before_start = (void *)(POOL_START_ADDR - 1024);
found = NE_AllocFindInRange(alloc, before_start, POOL_END, POOL_SIZE);
ASSERT(found == POOL_START);
// The range requested by the user ends before the memory pool
found = NE_AllocFindInRange(alloc, before_start, POOL_START, 64);
ASSERT(found == NULL);
// The range requested by the user starts after the memory pool
void *after_end = (void *)(POOL_END_ADDR + 1024);
found = NE_AllocFindInRange(alloc, POOL_END, after_end, 64);
ASSERT(found == NULL);
// Now, fill the memory pool with a few chunks of data and run more tests
// ----------------------------------------------------------------------
void *one_eight = (void *)(POOL_START_ADDR + (POOL_SIZE / 8));
void *one_quarter = (void *)(POOL_START_ADDR + (POOL_SIZE / 4));
void *three_eights = (void *)(POOL_START_ADDR + (3 * POOL_SIZE / 8));
void *three_quarters = (void *)(POOL_START_ADDR + (3 * POOL_SIZE / 4));
void *five_eights = (void *)(POOL_START_ADDR + (5 * POOL_SIZE / 8));
size_t quarter = POOL_SIZE / 4;
// +-----------------+-----------------+-----------------+-----------------+
// | | USED | | USED |
// +-----------------+-----------------+-----------------+-----------------+
ret = NE_AllocAddress(alloc, one_quarter, quarter);
ASSERT(ret == 0);
ret = NE_AllocAddress(alloc, three_quarters, quarter);
ASSERT(ret == 0);
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, quarter);
ASSERT(found == POOL_START);
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, POOL_SIZE / 2);
ASSERT(found == NULL);
found = NE_AllocFindInRange(alloc, one_eight, POOL_END, quarter);
ASSERT(found == half);
found = NE_AllocFindInRange(alloc, three_eights, POOL_END, quarter);
ASSERT(found == half);
found = NE_AllocFindInRange(alloc, three_eights, POOL_END, POOL_SIZE / 2);
ASSERT(found == NULL);
found = NE_AllocFindInRange(alloc, five_eights, POOL_END, quarter);
ASSERT(found == NULL);
ret = NE_Free(alloc, one_quarter);
ASSERT(ret == 0);
ret = NE_Free(alloc, three_quarters);
ASSERT(ret == 0);
// +-----------------+-----------------+-----------------+-----------------+
// | USED | | USED | |
// +-----------------+-----------------+-----------------+-----------------+
ret = NE_AllocAddress(alloc, POOL_START, quarter);
ASSERT(ret == 0);
ret = NE_AllocAddress(alloc, half, quarter);
ASSERT(ret == 0);
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, quarter);
ASSERT(found == one_quarter);
found = NE_AllocFindInRange(alloc, POOL_START, POOL_END, POOL_SIZE / 2);
ASSERT(found == NULL);
found = NE_AllocFindInRange(alloc, one_eight, POOL_END, quarter);
ASSERT(found == one_quarter);
found = NE_AllocFindInRange(alloc, three_eights, POOL_END, quarter);
ASSERT(found == three_quarters);
found = NE_AllocFindInRange(alloc, three_eights, POOL_END, POOL_SIZE / 2);
ASSERT(found == NULL);
found = NE_AllocFindInRange(alloc, five_eights, POOL_END, quarter);
ASSERT(found == three_quarters);
ret = NE_Free(alloc, POOL_START);
ASSERT(ret == 0);
ret = NE_Free(alloc, half);
ASSERT(ret == 0);
POOL_DEINITIALIZE();
}
// Known random number generator to always generate the same sequence of numbers
// and make this test reproducible.
int my_rand(void)
{
static unsigned long int next = 1;
next = next * 1103515245 + 12345;
return (unsigned int)(next / 65536) % 32768;
}
// Stress test
void test_stress(void)
{
printf("%s\n", __func__);
POOL_INITIALIZE();
#define NUM_PTRS 32
int ret;
void *ptr[NUM_PTRS];
for (int i = 0; i < NUM_PTRS; i++)
ptr[i] = NULL;
for (int i = 0; i < 500000; i++)
{
unsigned int selected = my_rand() % NUM_PTRS;
if (ptr[selected] == NULL)
{
// Unallocated pointer. Allocate it. The number of chunks is too
// small to ever fill the memory with this chunk size, so it should
// always be allocated.
size_t size = (my_rand() & 0x3FFF) + 1;
void *p;
if (size & 1)
p = NE_Alloc(alloc, size);
else
p = NE_AllocFromEnd(alloc, size);
ASSERT(p != NULL);
ptr[selected] = p;
}
else
{
// Allocated pointer. Deallocate it.
ret = NE_Free(alloc, ptr[selected]);
ASSERT(ret == 0);
ptr[selected] = NULL;
}
// Verify consistency of the list
ret = verify_consistency(alloc, POOL_START, POOL_END);
if (ret != 0)
{
printf("ret = %d", ret);
print_list(alloc);
while (1);
}
}
POOL_DEINITIALIZE();
}
int main(int argc, char *argv[])
{
// This test doesn't use Nitro Engine at all. Initialize the default console
// of libnds to print the results of the tests.
consoleDemoInit();
test_alloc_align();
test_alloc_from_end_align();
test_free();
test_free_from_end();
test_lock_unlock();
test_alloc_fail();
test_statistics();
test_internal_list_state();
test_alloc_fill();
test_alloc_range();
test_find_range();
test_stress();
printf("Done!");
while (1)
swiWaitForVBlank();
return 0;
}